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EDITORIAL
Estimados soios:En este nuevo número del boletín reogemos una veintena de trabajospresentados en la Conferenia Internaional Non-autonomous and StohastiDynamial Systems and Multidisiplinary Appliations (NSDS'09) elebrada enhonor del profesor Peter E. Kloeden, en onmemoraión de su sexagésimoumpleaños, que tuvo lugar en Sevilla, entre el 22 y el 26 de Junio del pasadoaño 2009.El profesor Kloeden se ha destaado por sus ontribuiones en todo tipode euaiones difereniales, sistemas dinámios y sus apliaiones, reibiendoreientemente el premioW. T. and Idalia Reid de la Soiety for Industrial andApplied Mathematis (SIAM) por sus ontribuiones fundamentales en teoría yanálisis omputaional de euaiones difereniales.La Conferenia, que se entró en avanes reientes en métodos topológios,teoría ergódia y nuevos desarrollos para sistemas dinámios no autónomos ysistemas dinámios estoástios, fue organizada por la Universidad de Sevilla yontó on más de una veintena de onfereniantes invitados y asi un entenarde partiipantes. Queremos agradeer espeialmente a dos de sus organizadores,Ma José Garrido y Pedro Marín, por su ayuda en la reopilaión de los trabajosque presentamos aquí.Reibid un ordial saludo, Grupo Editorboletin.sema�ulm.es
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ACTAS DEL NSDS09
Proeedings of the International ConfereneNON-AUTONOMOUS AND STOCHASTIC DYNAMICALSYSTEMS AND MULTIDISCIPLINARY APPLICATIONSJune 22nd�26th, 2009Sevilla (SPAIN)In Honor of Peter E. Kloeden on the oassion of his 60th birthday
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Bol. So. Esp. Mat. Apl.no51(2010), 9�17PULLBACK ATTRACTOR FOR A NON-AUTONOMOUSREACTION-DIFFUSION EQUATION IN SOME UNBOUNDEDDOMAINSMARÍA ANGUIANODpto. Euaiones Difereniales y Análisis NumérioUniversidad de Sevilla, Apdo. de Correos 1160,41080-Sevilla (Spain)anguiano�us.esAbstratThe existene of a pullbak attrator in L2(Ω) for the following non-autonomous reation-di�usion equation
8

>

<

>

:

∂u

∂t
−△u = f(u) + h(t), in Ω × (τ, +∞),

u = 0, on ∂Ω × (τ, +∞),
u(x, τ ) = uτ (x), x ∈ Ω, (1)is proved in this paper, when the domain Ω is not neessarily bounded butsatisfying the Poinaré inequality, and h ∈ L2

loc(R; H−1 (Ω)). The mainonept used in the proof is the asymptoti ompatness of the proessgenerated by the problem.Key words: pullbak attrator, asymptoti ompatness, evolution proess,non-autonomous reation-di�usion equation.AMS subjet lassi�ations: 35B41, 35Q35, 35Q30, 35K90, 37L30.1 Introdution and setting of the problemLet Ω ⊂ R
N be an open set, not neessarily bounded and suppose that Ωsatis�es the Poinaré inequality, i.e., there exists a onstant λ1 > 0 suh that
∫

Ω

|u(x)|2 dx ≤ λ−1
1

∫

Ω

|∇u(x)|2 dx, ∀u ∈ H1
0 (Ω) . (2)Let us onsider the following problem for a non-autonomous reation-di�usion equation with zero Dirihlet boundary ondition in Ω,





∂u

∂t
−△u = f(u) + h(t), in Ω × (τ,+∞),

u = 0, on ∂Ω × (τ,+∞),
u(x, τ) = uτ (x), x ∈ Ω, (3)9



10 M. Anguianowhere τ ∈ R, uτ ∈ L2 (Ω), h ∈ L2
loc(R;H−1 (Ω)) and f ∈ C(R) satis�es thatthere exist onstants α1 > 0, α2 > 0, l ≥ 0, and p > 2 suh that

−α1 |s|p ≤ f(s)s ≤ −α2 |s|p , (4)
(f(s) − f(r))(s − r) ≤ l(s− r)2 ∀r, s ∈ R. (5)The aim of this paper is to show the existene of a pullbak attrator in the phasespae L2(Ω) for the problem (3) in the ase of open domains not neessarilybounded but satisfying the Poinaré inequality. This, and the fat that the non-autonomous h belongs to the spae L2

loc(R;H−1 (Ω)), are the main novelties ofour problem.The lak of ompatness of the injetion H1
0 (Ω) ⊂ L2(Ω) (in the ase ofunbounded domains) implies that the standard tehniques previously used,partiularly the one involving the so-alled �atenning property (see [6℄, [7℄, [12℄,[14℄, amongst others), whih have been suessfully used when Ω is boundedand h ∈ L2

loc(R;L2(Ω)), do not work in our ase.Instead, we will use the asymptoti ompatness already used in the ase ofnon-autonomous 2D-Navier-Stokes (see [1℄ and [2℄, see also [5℄ for a lose result),and whih was previously used in [11℄ for the autonomous ase. We would liketo emphasize that this tehnique seems to be the only one whih allows to provethe main result of this paper (namely Theorem 4) onerning the existene ofpullbak attrator for our problem.It is also worth mentioning that our problem has reeived muh attentionover the last years in the ase of a bounded domain or for a less general term h(see [3℄, [7℄, [12℄, [14℄).Finally, the reader an �nd similar results for several variants of our model inthe referenes [9℄, [10℄, among others.2 Existene and uniqueness of solutionWe state in this setion a result on the existene and uniqueness of solution ofproblem (3). By |·| we denote the norm in L2 (Ω), by |∇·| the norm in H1
0 (Ω)and by ‖·‖∗ the norm in H−1 (Ω). We will use (·, ·) to denote the salar produtin L2 (Ω) and we will use 〈·, ·〉 to denote the duality produt between H−1 (Ω)and H1

0 (Ω).Theorem 1 Suppose that Ω satis�es (2). Assume that f ∈ C(R) satis�es (4)and (5), and h ∈ L2
loc(R;H−1 (Ω)). Then, for all τ ∈ R, uτ ∈ L2 (Ω), thereexists a unique solution u(t) = u(t; τ, uτ ) of (3) suh that

u ∈ L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp (Ω)) ∀T > τ,

d

dt
(u(t), v) − 〈∆u(t), v〉 = 〈f(u(t)), v〉
+ 〈h(t), v〉, in D′(τ,∞), ∀ v ∈ H1

0 (Ω) ∩ Lp (Ω) ,

u(τ) = uτ .



A reation-di�usion equation in some unbounded domains 11Moreover,
u ∈ C([τ,∞);L2 (Ω)),and u satis�es the energy equation,

1

2

d

dt
|u(t)|2 + |∇u(t)|2 = 〈f(u(t)), u(t)〉
+〈h(t), u(t)〉 in D′(τ,∞). (6)Proof . The proof of this Theorem an be done by the method of monotony(see [8℄). �3 Preliminaries on the theory of pullbak attratorsNow, we will reall the main points from the theory of pullbak attrators whihwill be needed to prove our objetive (see [1℄ and [2℄ for more details).Let us onsider a proess (also alled a two-parameter semigroup) U on ametri spae X , i.e., a family {U(t, τ); −∞ < τ ≤ t < +∞} of ontinuousmappings U(t, τ) : X → X , suh that U(τ, τ)x = x, and

U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t. (7)Suppose that D is a nonempty lass of parameterized sets D̂ = {D(t); t ∈ R} ⊂
P(X), where P(X) denotes the family of all nonempty subsets of X .De�nition 1 The proess U(·, ·) is said to be pullbak D-asymptotiallyompat if for any t ∈ R, any D̂ ∈ D, any sequene τn → −∞, and any sequene
xn ∈ D(τn), the sequene {U(t, τn)xn} is relatively ompat (i.e. pre-ompat)in X.De�nition 2 It is said that B̂ ∈ D is pullbak D-absorbing for the proess
U(·, ·) if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t suh that

U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0(t, D̂).De�nition 3 The family Â = {A(t); t ∈ R} ⊂ P(X) is said to be a pullbak
D-attrator for U(·, ·) if1. A(t) is ompat for all t ∈ R,2. Â is pullbak D-attrating, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0,for all D̂ ∈ D, and all t ∈ R,3. Â is invariant, i.e.,
U(t, τ)A(τ) = A(t), for −∞ < τ ≤ t < +∞.



12 M. AnguianoWe have the following result (see [2℄ for more details).Theorem 2 Suppose that the proess U(·, ·) is pullbak D-asymptotiallyompat and that B̂ ∈ D is a family of pullbak D-absorbing sets for U(·, ·).Then, the family Â = {A(t); t ∈ R} ⊂ P(X) de�ned by A(t) = Λ(B̂, t), t ∈
R, where for eah D̂ ∈ D

Λ(D̂, t) =
⋂

s≤t



⋃

τ≤s

U(t, τ)D(τ)


 ,is a pullbak D-attrator for U(·, ·) whih satis�es in addition that A(t) =

⋃
bD∈D Λ(D̂, t), for t ∈ R. Furthemore, Â is minimal in the sense thatif Ĉ = {C(t); t ∈ R} ⊂ P(X) is a family of losed sets suh that

limτ→−∞ dist(U(t, τ)B(τ), C(t)) = 0, then A(t) ⊂ C(t).4 Existene of the pullbak attratorNow, we an prove our main result in this paper. First, we need a ontinuityresult whih is established in the next subsetion.4.1 Weak ContinuityAssume that the funtion f ∈ C(R) satis�es (4) and (5), and that h ∈
L2

loc(R;H−1 (Ω)).Thanks to Theorem 1, we an de�ne a proess {U(t, τ), τ ≤ t} in L2 (Ω),as
U(t, τ)uτ = u(t; τ, uτ ) ∀uτ ∈ L2 (Ω) , ∀τ ≤ t. (8)From the uniqueness of solution to problem (3), it follows that (8) de�nes aproess in L2 (Ω). In addition, it an be proved that the proess de�ned by (8)is ontinuous in L2 (Ω).Moreover, U is weakly ontinuous, and more exatly the following resultholds true. We will denote by �⇀� the weak onvergene in the orrespondingindiated spae, while �→� will denote the strong onvergene, as usual.Proposition 3 Let {uτn

} ⊂ L2 (Ω) be a sequene onverging weakly in L2 (Ω)to an element uτ ∈ L2 (Ω). Then, for all T > τ , it follows
U (t, τ) uτn

⇀ U (t, τ)uτ in L2 (Ω) ∀t ≥ τ , (9)
U (·, τ) uτn

⇀ U (·, τ) uτ in L2(τ, T ;H1
0 (Ω)), (10)

U (·, τ) uτn
⇀ U (·, τ) uτ in Lp(τ, T ;Lp (Ω)), (11)

f (U (·, τ)uτn
) ⇀ f (U (·, τ) uτ ) in Lp′(τ, T ;Lp′

(Ω)). (12)If Ω is a bounded set, then
U (·, τ) uτn

−→ U (·, τ) uτ in L2(τ, T ;L2 (Ω)). (13)



A reation-di�usion equation in some unbounded domains 13Proof . This result may be proved in muh the same way as Theorem 1, andusing similar arguments to [11℄. �4.2 The existene of the global pullbak attratorLet Rλ1 be the set of all funtions r : R → (0,+∞) suh that
lim

t→−∞
eλ1tr2(t) = 0,and denote by Dλ1 the lass of all families D̂={D(t) : t ∈ R} ⊂ P(L2 (Ω) ) suhthat D(t) ⊂ B(0, r

bD(t)), for some r
bD ∈ Rλ1 , where B(0, r

bD(t)) denotes thelosed ball in L2 (Ω) entered at zero with radius r
bD(t).Now, we an prove the following result.Theorem 4 Suppose that Ω satis�es (2), and suppose that f ∈ C(R) satis�es(4) and (5) with l = 0. Let h ∈ L2

loc(R;H−1 (Ω)) be suh that
∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds < +∞ ∀t ∈ R.Then, there exists a unique global pullbak Dλ1-attrator for the proess U , whihbelongs to Dλ1 , and is de�ned by (8).Proof. We only give the main ideas of the proof. Let τ ∈ R, and uτ ∈ L2 (Ω)be �xed, and denote
u(t) = u(t; τ, uτ) = U(t, τ)uτ ∀t ≥ τ .Let D̂ ∈ Dλ1 be given. Taking into aount (2), (4), the energy equality andintegrating between τ and t,

|U(t, τ)uτ |2 ≤ e−λ1t

∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds

+eλ1(τ−t)r2D(τ), (14)for all uτ ∈ D(τ) and for all t ≥ τ .Denote by Rλ1(t) the nonnegative number given for eah t ∈ R by
R2

λ1
(t) = e−λ1t

∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds+ 1. (15)Observe that Rλ1 ∈ Rλ1 . Now, onsider the family B̂λ1 of losed balls in L2 (Ω),
B̂λ1 = {Bλ1(t) : t ∈ R} , de�ned by Bλ1(t) =

{
v ∈ L2 (Ω) : |v| ≤ Rλ1(t)

} . It isstraightforward to hek that B̂λ1 ∈ Dλ1 , and moreover, by (14), the family B̂λ1is pullbak Dλ1 -absorbing for the proess U .Aording to Theorem 2, to �nish the proof of the theorem we only have toprove that U is pullbak Dλ1-asymptotially ompat.



14 M. AnguianoLet us �x D̂ ∈ Dλ1 , a sequene τn → −∞, a sequene uτn
∈ D(τn), and

t ∈ R. We have to prove that from the sequene {U(t, τn)uτn
} we an extrat asubsequene that onverges in L2 (Ω).As the family B̂λ1 is pullbak Dλ1 -absorbing, by a diagonal proedure, it is notdi�ult to onlude that there exist a subsequene {(τn′ , uτn′

)}
⊂ {(τn, uτn

)},and a sequene {wk; k ≥ 0} ⊂ L2 (Ω) suh that for all k ≥ 0, and wk ∈
Bλ1(t− k),

U(t− k, τn′)uτn′ ⇀ wk in L2 (Ω) , (16)and
|w0| ≤ lim inf

n′→∞

∣∣U(t, τn′)uτn′

∣∣ . (17)If we now prove that also
lim sup
n′→∞

∣∣U(t, τn′)uτn′

∣∣ ≤ |w0| , (18)then we will have
lim

n′→∞

∣∣U(t, τn′)uτn′

∣∣ = |w0| .And this, together with the weak onvergene, will imply the strong onvergenein L2 (Ω) of U(t, τn′)uτn′ to w0.In order to prove (18), onsider [u] := |∇u|2 − λ1

2 |u|2 − 〈f(u), u〉 . Taking intoaount (2), (4), the energy equality and integrating between τ and t, it isimmediate that for all k ≥ 0 and all τn′ ≤ t− k,
∣∣U(t, τn′)uτn′

∣∣2 (19)
=
∣∣U(t− k, τn′)uτn′

∣∣2 e−λ1k

+ 2

∫ t

t−k

eλ1(s−t)
〈
h(s), U(s, t− k)U(t− k, τn′)uτn′

〉
ds

− 2

∫ t

t−k

eλ1(s−t)
[
U(s, t− k)U(t− k, τn′)uτn′

]
ds.Now we will prove that

∫ t

t−k

eλ1(s−t) [U(s, t− k)wk] ds (20)
≤ lim inf

n′→∞

∫ t

t−k

eλ1(s−t)
[
U(s, t− k)U(t− k, τn′)uτn′

]
ds.Denote

Jk(v) = J
(1)
k (v) + J

(2)
k (v),where

J
(1)
k (v) =

∫ t

t−k

eλ1(s−t)

(
|∇v(s)|2 − λ1

2
|v(s)|2

)
ds,



A reation-di�usion equation in some unbounded domains 15and
J

(2)
k (v) = −

∫ t

t−k

eλ1(s−t) 〈f(v), v〉 ds,for all v ∈ L2(t− k, t;H1
0 (Ω)) ∩ Lp(t− k, t;Lp (Ω)).We also obtain from (16) and using Proposition 3

lim inf
n′→∞

(J
(1)
k (U(·, t− k)U(t− k, τn′)uτn′ )

≥ J
(1)
k (U(·, t− k)wk). (21)Using (5) with l = 0, from (16) and Proposition 3 we easily obtain

lim
n′→∞

inf
(
J

(2)
k (U(·, t− k)U(t− k, τn′)uτn′ )

)

≥ J
(2)
k (U(·, t− k)wk).Therefore (20) is easily obtained from the last inequality and (21).Then, taking into aount that the family B̂λ1 is pullbak Dλ1 -absorbing, from(16), using Proposition 3 and thanks to (19) and (20), we obtain
lim

n′→∞
sup

∣∣U(t, τn′)uτn′

∣∣2

≤ R2
λ1

(t− k)e−λ1k + |w0|2 ,for all k ≥ 1. Taking into aount (15), we easily obtain
lim

n′→∞
sup

∣∣U(t, τn′)uτn′

∣∣2 ≤ |w0|2 .
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ELLIPTIC PROBLEMS IN THIN DOMAINS WITH HIGHLYOSCILLATING BOUNDARIESJOSÉ M. ARRIETA∗ AND MARCONE C. PEREIRA†

∗Dpto. Matematia Apliada, Universidad Complutense de Madrid28040 Madrid, Spain
†Esola de Artes, Cienias e HumanidadesUniversidade de São Paulo, São Paulo, Brasilarrieta�mat.um.es marone�usp.brAbstratWe study the Laplae operator with Neumann boundary onditions ina 2-dimensional thin domain with a higly osillating boundary. We obtainthe orret limit problem for the ase where the boundary is the graph ofthe osillating funtion ǫGǫ(x) where Gǫ(x) = a(x) + b(x)g(x/ǫ) with gperiodi and a and b not neessarily onstant.Key words: thin domains, osillations, homogenizationAMS subjet lassi�ations: 35B27, 74K10.1 IntrodutionWe are interested in analyzing the behavior of the solutions, as the parameter

ǫ→ 0, of the following linear ellipti problem




−∆wǫ + wǫ = f ǫ in Rǫ

∂wǫ

∂N ǫ
= 0 on ∂Rǫ

(1)where the domain Rǫ is a thin domain with a highly osillating boundary,
f ǫ ∈ L2(Rǫ) and N ǫ = (N ǫ

1 , N
ǫ
2) is the unit outward normal to ∂Rǫ.We de�ne the thin domain as

Rǫ = {(x1, x2) ∈ R
2 | x1 ∈ I, 0 < x2 < ǫGǫ(x1)} (2)

∗Partially supported by: PHB2006-003 PC and PR2009-0027 from MICINN; MTM2006�08262, MTM2009-07540 DGES, Spain and GR58/08, Grupo 920894 (BSCH-UCM, Spain)
†Partially supported by FAPESP 2006/06278-7, CAPES DGU 127/07 and CNPq305210/2008-4. 17



18 J.M. Arrieta, M.C. Pereirawhere I = (0, 1), the funtion Gǫ(x) = a(x) + b(x)g(x/ǫ) where g : R 7→ R isan L-periodi positive funtion of lass C1 and the funtions a, b : I 7→ R arepieewise C1-funtions de�ned on I = (0, 1) satisfying
α0 ≤ a(x) ≤ α1 and β0 ≤ b(x) ≤ β1. (3)We also assume that there exist positive onstants G0 and G1 suh that

0 < G0 ≤ Gǫ(x) ≤ G1 on I (4)uniformly in ǫ > 0.
Figure 1: The thin domain RǫIt is known that if the domain does not present osillations, that is g ≡ 0,the 1-dimensional limiting problem is given by,





− 1

a(x)
(a(x)vx)x + v = f, in (0, 1)

vx(0) = vx(1) = 0

(5)see for instane [6, 7, 8℄.Moreover, if we onsider g(x/ǫα) for some 0 < α < 1, instead of g(x/ǫ) andif we assume that a(x) + b(x)g(x/ǫα) → h(x) w-L2(0, 1) and 1
a(x)+b(x)g(x/ǫα) →

k(x) w-L2(0, 1) (observe that h(x)k(x) ≥ 1 a.e. and in general it is not truethat h(x)k(x) ≡ 1), then the limit problem is




− 1

h(x)
(

1

k(x)
vx)x + v = f, in (0, 1)

vx(0) = vx(1) = 0

(6)see [1℄.In this note we are interested in addressing the ase α = 1, that is
Gǫ(x) = a(x) + b(x)g(x/ǫ), where none of the tehniques used to solve theprevious two ases apply. Observe that this ase is very resonant: the height ofthe domain, the amplitude of the osillations at the boundary and the periodof the osillations are of the same order ǫ.As a matter of fat, we will show that the limit equation is



Thin osillating domains 19
{
−∂x(q(x) ∂xw0) + p(x)w0 = p(x)f(x), x ∈ (0, 1)

w′
0(0) = w′

0(1) = 0
(7)where

q(x) =

∫

Y ∗
x

{
1 − ∂Xx

∂y1
(y1, y2)

}
dy1dy2, p(x) = |Y ∗

x |and the 2 dimensional domain Y ∗
x depends on x ∈ (0, 1) and is given by

Y ∗
x = {(y1, y2) ∈ R

2 : 0 < y1 < L, 0 < y2 < a(x) + b(x)g(y1)} (8)and Xx is given by the solution of





−∆Xx = 0 in Y ∗
x

∂Xx

∂N = 0 on Bx
2

∂Xx

∂N = N1 on Bx
1

Xx(0, y2) = Xx(L, y2) on Bx
0∫

Y ∗
x
Xx dy1dy2 = 0.

(9)To obtain the limitting equation (7) we will divide the analysis in three ases:(1) the purely periodi ase, that is, a(·) and b(·) onstants; (2) the pieewiseperiodi ase, that is, a(·) and b(·) are pieewise onstant and (3) the generalase, where a and b are smooth funtions.2 Basi fats and notationTo study the onvergene of (1) on the thin osillating domain Rǫ, we onsiderthe hange of variables (x, y) = (x1, ǫx2) whih transform problem (1) into theequivalent linear ellipti problem




− ∂2uǫ

∂x1
2 − 1

ǫ2
∂2uǫ

∂x2
2 + uǫ = f ǫ in Ωǫ

∂uǫ

∂x1
N ǫ

1 +
1

ǫ2
∂uǫ

∂x2
N ǫ

2 = 0 on ∂Ωǫ

(10)on the domain Ωǫ ⊂ R
2 given by

Ωǫ = {(x1, x2) ∈ R
2 | x1 ∈ I, 0 < x2 < Gǫ(x1)}. (11)Observe that domain Ωǫ is not thin any more, although the osillations presentedat the upper boundary are very wild. Nevertheless, the 1

ǫ2 fator in front of thedi�usion in the x2 diretion ompensate the very wild osillations at the topboundary.The variational formulation of (10) is �nd uǫ ∈ H1(Ωǫ) suh that
∫

Ωǫ

{∂uǫ

∂x1

∂ϕ

∂x1
+

1

ǫ2
∂uǫ

∂x2

∂ϕ

∂x2
+uǫϕ

}
dx1dx2 =

∫

Ωǫ

f ǫϕdx1dx2 ∀ϕ ∈ H1(Ωǫ). (12)



20 J.M. Arrieta, M.C. PereiraIn a natural way, we will need to onsider the spae H1(U) with the followingnorm, that we denote by H1
ǫ (U)

‖w‖2
H1

ǫ (U) = ‖w‖2
L2(U) +

∥∥∥
∂w

∂x1

∥∥∥
2

L2(U)
+

1

ǫ2

∥∥∥
∂w

∂x2

∥∥∥
2

L2(U)given by the inner produt
(φ, ϕ)H1

ǫ (U) =

∫

U

{ ∂φ
∂x1

∂ϕ

∂x1
+

1

ǫ2
∂φ

∂x2

∂ϕ

∂x2
+ φϕ

}
dx1dx2where U is an arbitrary open set of R

2.Remark that the solutions uǫ satisfy an uniform a priori estimate on ǫ. Infat, we an take ϕ = uǫ in the expression (12) and after some easy alulations,we obtain
‖uǫ‖H1

ǫ (Ωǫ) ≤ ‖f ǫ‖L2(Ωǫ). (13)We also have the following extension operator,Lemma 1 Let O and Oǫ be the domains given by
O = {(x1, x2) ∈ R

2 | x1 ∈ I and 0 < x2 < G1}
Oǫ = {(x1, x2) ∈ R

2 | x1 ∈ I and 0 < x2 < Gǫ(x1)}where I ⊂ R is an open interval, Gǫ : I 7→ R is a C1-funtion satisfying
0 < G0 ≤ Gǫ(x1) ≤ G1 for all x ∈ I and ǫ > 0.We have the following general extension operator

Pǫ ∈ L(Lp(Oǫ), Lp(O)) ∩ L(W 1,p(Oǫ),W 1,p(O))and a onstant K independent of ǫ and p suh that
‖Pǫϕ‖Lp(O) ≤ K ‖ϕ‖Lp(Oǫ),

∥∥∥
∂Pǫϕ

∂x2

∥∥∥
Lp(O)

≤ K
∥∥∥
∂ϕ

∂x2

∥∥∥
Lp(Oǫ)

∥∥∥
∂Pǫϕ

∂x1

∥∥∥
Lp(O)

≤ K
{∥∥∥

∂ϕ

∂x1

∥∥∥
Lp(Oǫ)

+ η(ǫ)
∥∥∥
∂ϕ

∂x2

∥∥∥
Lp(Oǫ)

} (14)for all ϕ ∈W 1,p(Oǫ) where 1 ≤ p ≤ ∞ and η(ǫ) = supx∈I{|G′
ǫ(x)|}.Proof . We extend the funtions in the vertial diretion by re�etion arossthe osillating boundary, see [3℄ for details. �3 The purely periodi aseWith the aid of the multiple sale method, we an obtain our andidate to limitproblem. One the limit problem is obtained, we may use the osillatory testfuntion method of Tartar to show the onvergene. The ideas to obtain thisproblem follow very losely the arguments of [5, 4℄.



Thin osillating domains 21We de�ne the basi ell
Y ∗ = {(y, z) ∈ R

2 : 0 < y < L and 0 < z < g(y)} (15)and we all B0 the lateral boundary, B1 the upper boundary and B2 the lowerboundary of ∂Y ∗. So that, ∂Y ∗ = B0 ∪B1 ∪B2.In this ell we solve the problem,




−∆y,zX(y, z) = 0 in Y ∗

∂X
∂N (y, g(y)) = − g′(y)√

1+(g′(y))2
on B1,

∂X
∂N (y, 0) = 0 on B2

X(0, z) = X(L, z) z ∈ B0,∫
Y ∗ X dy1dy2 = 0and onsider

q =

∫

Y ∗

{
1 − ∂X

∂y
(y, z)

}
dydz, p = |Y ∗|.Then, the limitting problem is,





−q d

2w0

dx2
(x) + pw0(x) = pf(x), x ∈ (0, 1)

u′0(0) = u′0(1) = 0.

(16)4 The pieewise periodi aseWe onsider in this setion the ase where the funtions a and b are loallyonstant funtions de�ned on I = (0, 1). That is, we suppose there exists a setof points
0 = x0 < x1 < ... < xN = 1 (17)suh that the funtions a and b are onstants, say ai and bi, on eah interval

Ii = (xi−1, xi) with 1 ≤ i ≤ N .Considering the weak formulation (12) of problem (10) and using theextension operator from Lemma 1 in eah of the intervals (xi, xi+1), we anobtain that if we de�ne the family of basi ells
Y ∗

i = {(y1, y2) ∈ R
2 : 0 < y1 < L, 0 < y2 < ai + big(y1)} (18)and if we solve the family of problems in eah of the basi ells for i = 1, . . . , n,





−∆Xi = 0 in Y ∗
i

∂Xi

∂N = 0 on Bi
2

∂Xi

∂N = N1 on Bi
1

Xi(0, y2) = Xi(L, y2) on Bi
0∫

Y ∗
i

Xi dy1dy2 = 0

(19)



22 J.M. Arrieta, M.C. Pereirawhere Bi
0 is the lateral boundary, Bi

1 is the upper boundary and Bi
2 is the lowerboundary of ∂Y ∗

i for all i = 1, ..., N and de�ne
qi =

∫

Y ∗
i

{
1 − ∂Xi

∂y1
(y1, y2)

}
dy1dy2, pi = |Y ∗

i |then the variational formulation of the limit problem is
∫ 1

0

q(x)
∂u0

∂x

∂ϕ

∂x
+ p(x)u0ϕ =

∫ 1

0

p(x)fϕ, ∀ϕ ∈ H1(0, 1) (20)where q(x) and p(x) are the pieewise onstant funtion q(x) = qi, p(x) = pifor x ∈ (xi, xi+1), i = 1, . . . , N .As a matter of fat, the following result an be proved,Proposition 2 For eah sequene ǫ → 0, there exists a subsequene, that wealso denote by ǫ, and a funtion f0 ∈ L2(0, 1) suh that if u0 ∈ H1(0, 1) is theweak solution of (20) then
Pǫu

ǫ ⇀ u0 w −H1((xi, xi+1) × (0, G1)), i = 1, . . . , Nwhere Pǫ is the extension operator given by Lemma 1 and where we assume that
u0 has been extended onstantly in the x2 diretion.5 The general aseWe onsider in this setion the ase where a and b are smooth funtions notneessarily pieewise onstant. We will obtain the limit equation and theonvergene of the solution of (10) to the solution of the limit problem byapproximating the funtions a(·) and b(·) in L∞(0, 1) by pieewise onstantfuntions aδ(·), bδ(·), using the results from the previous setion and passing tothe limit when δ → 0. Observe that if ‖a−aδ‖L∞(0,1) → 0 and ‖b−bδ‖L∞(0,1) →
0 as δ → 0, then ‖Gǫ −Gδ

ǫ‖ → 0 as δ → 0, uniformly in ǫ. This new parameter
δ introdues new di�ulties in the problem sine now we will need to onsiderproblem (10) with two parameters, ǫ and δ and the solution u = uǫ

δ. In orderto be able to pass to the limit appropriately, we will prove a result on theontinuous dependene of the solutions of (10) with respet to the funtions aand b uniformly in ǫ. This uniformity will allow us to interhange the limit andobtain the orret limit problem.More preisely, assume a, â, b and b̂ are real funtions uniformly bonded on
I satisfying (3) and onsider the assoiated osillating domains Ωǫ and Ω̂ǫ givenby

Ωǫ = {(x1, x2) ∈ R
2 | x1 ∈ I, 0 < x2 < Gǫ(x1)},

Ω̂ǫ = {(x1, x2) ∈ R
2 | x1 ∈ I, 0 < x2 < Ĝǫ(x1)}with

Gǫ(x) = a(x) + b(x)g(x/ǫ) Ĝǫ(x) = â(x) + b̂(x)g(x/ǫ)



Thin osillating domains 23satisfying (4).Let uǫ and ûǫ be the solutions of the problem (10) in the osillating domains
Ωǫ and Ω̂ǫ respetively with f ǫ ∈ L2(R2). Then we have the following result:Proposition 3 There exists a positive real funtion ρ : [0,∞) 7→ [0,∞) suhthat

‖uǫ − ûǫ‖2
H1

ǫ (Ωǫ∩Ω̂ǫ)
+ ‖uǫ‖2

H1
ǫ (Ωǫ\Ω̂ǫ)

+ ‖ûǫ‖2
H1

ǫ (Ω̂ǫ\Ωǫ)
≤ ρ(δ) (21)with ρ(δ) → 0 as δ → 0 uniformly for all

• ǫ > 0;
• pieewise C1 funtions a, b, â, b̂ with ‖a−â‖L∞(0,1) ≤ δ, ‖b− b̂‖L∞(0,1) ≤ δ,and α0 ≤ a(x), â(x) ≤ α1, β0 ≤ b(x), b̂(x) ≤ β1,
• fǫ ∈ L2(R2), ‖fǫ‖L2(R2) ≤ 1.Idea of the proof. We use that uǫ and ûǫ are the minima in H1(Ωǫ) and H1(Ω̂ǫ),respetively of the funtionals
Vǫ(ϕ) =

1

2

∫

Ωǫ

{ ∂ϕ
∂x1

2

+
1

ǫ2
∂ϕ

∂x2

2

+ ϕ2
}
dx1dx2 −

∫

Ωǫ

f ǫϕdx1dx2

V̂ǫ(ϕ̂) =
1

2

∫

Ω̂ǫ

{ ∂ϕ̂
∂x1

2

+
1

ǫ2
∂ϕ̂

∂x2

2

+ ϕ̂2
}
dx1dx2 −

∫

Ω̂ǫ

f ǫϕ̂dx1dx2.

(22)That is,
Vǫ(u

ǫ) = min
ϕ∈H1(Ωǫ)

Vǫ(ϕ), V̂ǫ(û
ǫ) = min

ϕ̂∈H1(Ω̂ǫ)
V̂ǫ(ϕ̂).To be able to obtain an estimate like (21) we will need to be able to somehowplug the funtion uǫ in the minimization problem for ûǫ and also plug ûǫ inthe minimization for uǫ and operate wisely to obtain the estimates. Sine thedomains Ωǫ and Ω̂ǫ are di�erent and they do not neessarily have any inlusionrelation, we will need to �extend� the funtion uǫ to Ω̂ǫ and vieversa, �extend"the funtion ûǫ to Ωǫ. But if we use the extension operator de�ned in Lemma1 then the onstants involved will depend on the derivative of the funtions a, band â, b̂. But this is a serious drawbak sine the funtions a, b â, b̂ are notsmooth enough and they do not need to be lose in the C1 topology. Therefore,we annot use the extension operator from Lemma 1.Instead of this extension operator we de�ne an operator whih onsists in�strething" a funtion de�ned in Ωǫ only in the x2-diretion by a fator (1+ η)and restrit the �strethed� funtion to the domain Ω̂ǫ. That is, in general, letus de�ne the operator

P1+η : H1(U) 7→ H1(U(1 + η))

(P1+ηϕ)(x1, x2) = ϕ

(
x1,

x2

1 + η

)
(x1, x2) ∈ U

(23)



24 J.M. Arrieta, M.C. Pereirawhere
U(1 + η) = {(x1, (1 + η)x2) ∈ R

2 | (x1, x2) ∈ U}and U ⊂ R
2 is an arbitrary open set.With this operator, we an show that if uǫ is a solution of problem (10) then

‖uǫ‖2
H1

ǫ (Ωǫ\Ωǫ( 1
1+η

)) + ‖P1+ηu
ǫ‖2

H1
ǫ (Ωǫ(1+η)\Ωǫ) + ‖uǫ − P1+ηu

ǫ‖2
H1

ǫ (Ωǫ) ≤ C
√
ηwhere C = C(G1, ‖f ǫ‖L2) independent of ǫ ∈ (0, 1).This last estimate allows us to onsider the funtion P1+ηuǫ|Ω̂ǫ

as a testfuntion in the problem in Ω̂ǫ and P1+ηûǫ|Ωǫ
as a test funtion in the problemin Ωǫ. The fat that ‖a − â‖L∞(0,1), ‖b − b̂‖L∞(0,1) ≤ δ permits us to take ηsmall uniformly in ǫ.With Proposition 3 and using that estimate (21) is uniformly in ǫ, will allowus to show that the limit problem in the general ase is given by (7).Referenes[1℄ J.M. Arrieta; Spetral properties of Shrödinger operators under perturba-tions of the domain. Ph.D. Thesis, Georgia Inst of Teh, (1991).[2℄ J.M. Arrieta, M.C. Pereira; Thin domains with highly osillatingboundaries, In preparation.[3℄ J. M. Arrieta, A. N. Carvalho, M. C. Pereira and R. P. da Silva; TheNeumann problem on thin domain with boundary osillating, preprint.[4℄ A. Bensoussan, J. L. Lions and G. Papaniolaou; Asymptoti Analysis forPeriodi Strutures, North-Holland Publishing Company (1978).[5℄ D. Cioranesu and J. Saint J. Paulin; Homogenization of RetiulatedStrutures, Springer Verlag (1980).[6℄ J. K. Hale and G. Raugel; Reation-di�usion equation on thin domains, J.Math. Pures and Appl. (9) 71, no. 1, 33-95 (1992).[7℄ G. Raugel; Dynamis of partial di�erential equations on thin domains inDynamial systems (Monteatini Terme, 1994), 208-315, Leture Notes inMath., 1609, Springer, Berlin, 1995.[8℄ R. P. da Silva, Semiontinuidade inferior de atratores para problemasparabólios em domínios �nos, Tese apresentada ao Instituto de CiêniasMatemátias e de Computaão - ICMC - USP, Setembro de 2007.[9℄ L. Tartar; Problèmmes d'homogénéisation dans les équations aux dérivéespartielles, Cours Peot, Collège de Frane (1977).
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MORE ON FINITE-TIME HYPERBOLICITYARNO BERGERMathematial Sienes, University of AlbertaEdmonton, Alberta, Canadaaberger�math.ualberta.aAbstratA solution of a nonautonomous ordinary di�erential equation is �nite-time hyperboli, i.e. hyperboli on a ompat interval of time, if thelinearisation along that solution exhibits a strong exponential dihotomy.In analogy to lassial asymptoti fats, it is shown that �nite-timehyperboliity is robust, that is, it persists under small perturbations.Eigenvalues and -vetors may be misleading with regards to hyperboliity.This is demonstrated by means of simple examples.Key words: Hyperboliity, exponential dihotomy, �nite-time dynamis.AMS subjet lassi�ations: 34A30, 37B55, 37D05.Hyperboliity is widely reognised as a fundamental notion of dynamial systemstheory. While extensions and re�nements of the lassial, that is, asymptotionept ontinue to play a vital role in modern dynamis, muh attention hasreently been drawn to the systemati study of suitable �nite-time analogues.This note ontributes to �nite-time dynamis a brief disussion of two pratialaspets of the hyperboliity onept developed and utilised e.g. in [1, 3, 4, 6, 8℄.1 Hyperboliity is robustConsider the nonautonomous ordinary di�erential equation

ẋ = f(t, x) , (1)where f : I × U → R
d is C1, I = [t−, t+] with −∞ < t− < t+ < +∞, and

U ⊂ R
d is a non-empty open set. The linearisation of (1) along any solution

µ : I → U is
ẏ = Dxf

(
t, µ(t)

)
y . (2)To quantify growth and deay of solutions of (2), arbitrary inner produt norms

‖ · ‖Γ =
√
〈·,Γ·〉 are onsidered, where Γ ∈ R

d×d is any symmetri positivede�nite matrix, i.e. Γ⊤ = Γ > 0, and 〈·, ·〉 is the standard inner produt on R
d;25



26 A. Bergerthe symbol ‖ ·‖Γ also denotes the indued norm on R
d×d. Quantities dependingon Γ have their dependene made expliit by a subsript whih is suppressedonly if Γ equals idd×d, the d× d identity matrix.To de�ne �nite-time hyperboliity, instead of (2) onsider more generallyany nonautonomous linear equatioṅ

y = A(t)y , (3)where A : I → R
d×d is ontinuous. Let Φ : I × I → R

d×d denote the assoiatedevolution operator, i.e., y : t 7→ Φ(t, s)η is, for any η ∈ R
d, the unique solutionof (3) satisfying y(s) = η. A projetion-valued funtion P : I → R

d×d is aninvariant projetor for (3) if P (t)Φ(t, s) = Φ(t, s)P (s) for all t, s ∈ I. Note that
t 7→ P (t) is ontinuous, and rkP (t) is onstant, for any invariant projetor.De�nition 1 Let Γ⊤ = Γ > 0. Equation (3) is hyperboli (on I w.r.t. ‖ · ‖Γ) ifthere exists an invariant projetor P for (3), together with onstants α, β > 0,suh that for every y ∈ R

d,
∥∥Φ(t, s)P (s)y

∥∥
Γ
≤ e−α(t−s)

∥∥P (s)y
∥∥

Γ
, ∀t ≥ s , (4)

∥∥Φ(t, s)
(idd×d − P (s)

)
y
∥∥

Γ
≤ eβ(t−s)

∥∥(idd×d − P (s)
)
y
∥∥

Γ
, ∀t ≤ s . (5)A solution µ of (1) is hyperboli if the assoiated linearisation (2) is hyperboli.The estimates in De�nition 1 inorporate a �nite-time variant of the lassialnotion of an exponential dihotomy that is more restritive than the latterbeause an arbitrary multipliative onstant on the right-hand side of (4) or(5) would render the onept meaningless. Consequently, to establish therobustness of �nite-time hyperboliity, lassial arguments using Gronwall-typeestimates (see e.g. [10℄) do not apply diretly. Instead, the alternative argumentpresented in Lemma 2 below makes use of [3, Lem.9℄, restated here asProposition 1 Equation (3) is hyperboli on I w.r.t. ‖ · ‖Γ, with invariantprojetor P and onstants α, β > 0, if and only if, for all t ∈ I and y ∈ R

d,
d

dt
‖Φ(t, t−)P (t−)y‖Γ ≤ −α‖Φ(t, t−)P (t−)y‖Γ , (6)as well as

d

dt

∥∥Φ(t, t−)
(
idd×d − P (t−)

)
y
∥∥

Γ
≥ β

∥∥Φ(t, t−)
(
idd×d − P (t−)

)
y
∥∥

Γ
. (7)Lemma 2 Let A, Ã : I → R

d×d be ontinuous, and assume (3) is hyperboli,with onstants α, β > 0. Then, given 0 < α̃ < α, 0 < β̃ < β, there exists δ > 0suh that
ẏ = Ã(t)y (8)is hyperboli as well, with onstants α̃, β̃, whenever maxt∈I ‖Ã(t)−A(t)‖Γ < δ.



More on �nite-time hyperboliity 27Proof . For every ontinuous B : I → R
d×d, let ‖B‖∞ := maxt∈I ‖B(t)‖Γ,and denote by Φ and Φ̃ the evolution operators assoiated with (3) and (8),respetively. Also, reall the trivial estimate

e−|t−s|‖A‖∞‖y‖Γ ≤ ‖Φ(t, s)y‖Γ ≤ e|t−s|‖A‖∞‖y‖Γ , ∀t, s ∈ I , (9)and note that P̃ : t 7→ Φ̃(t, t−)P (t−)Φ̃(t, t−)−1 is an invariant projetor for (8).For the latter equation, the variation of onstants formula yields
Φ̃(t, t−) − Φ(t, t−) =

∫ t

t−

Φ(t, τ)
(
Ã(τ) −A(τ)

)
Φ̃(τ, t−) dτ ,whih together with (9) implies that, for all t ∈ I,

∥∥Φ̃(t, t−) − Φ(t, t−)
∥∥

Γ
≤
∫ t

t−

e(t−τ)‖A‖∞‖Ã−A‖∞e(τ−t−)‖ eA‖∞dτ

≤ e(t−t−)‖A‖∞‖Ã−A‖∞
∫ t

t−

e(τ−t−)‖ eA−A‖∞dτ

≤ e(t−t−)‖A‖∞

(
e(t−t−)‖ eA−A‖∞ − 1

)

≤ 2(t− t−)e(t−t−)‖A‖∞‖Ã−A‖∞ ,provided that ‖Ã − A‖∞ < δ1 := (t+ − t−)−1. Given y ∈ R
d, de�ne the two

C1-funtions φ, φ̃ : I → R as
φ : t 7→ 1

2‖Φ(t, t−)P (t−)y‖2
Γ , φ̃ : t 7→ 1

2‖Φ̃(t, t−)P (t−)y‖2
Γ .For notational onveniene, let η = P (t−)y. It follows from the estimate

∣∣ ˙̃φ− φ̇
∣∣ =

∣∣〈ΓÃΦ̃η, Φ̃η〉 − 〈ΓAΦη,Φη〉
∣∣

≤
∣∣〈Γ(Ã−A)φ̃η, φ̃η〉

∣∣+
∣∣〈ΓAΦ̃η, Φ̃η〉 − 〈ΓAΦη,Φη〉

∣∣

≤ 2‖Ã−A‖∞φ̃+ ‖A‖∞‖(Φ̃ − Φ)η‖Γ(‖Φ̃η‖Γ + ‖Φη‖Γ)

≤ 2‖Ã−A‖∞φ̃+ ‖A‖∞(t+ − t−)e(t+−t−)‖A‖∞‖Ã−A‖∞‖η‖Γ(

√
8φ̃+

√
8φ)

≤ 2‖Ã−A‖∞
(
φ̃+ 2‖A‖∞(t+ − t−)e(t+−t−)(2‖A‖∞+‖ eA−A‖∞)(φ̃+ φ)

)
,whih is valid whenever ‖Ã−A‖∞ < δ1, that

∣∣ ˙̃φ(t) − φ̇(t)
∣∣ ≤ C‖Ã−A‖∞

(
φ̃(t) + φ(t)

)
, ∀t ∈ I ,where C depends only on t+ − t− + ‖A‖∞. With Proposition 1, therefore,

˙̃
φ ≤ φ̇+ C‖Ã−A‖∞(φ̃+ φ) ≤ −2αφ+ C‖Ã−A‖∞(φ̃+ φ)

≤ −2(α− C‖Ã−A‖∞)φ̃+ (2α+ C‖Ã−A‖∞)
∣∣φ̃− φ

∣∣ , (10)



28 A. Bergerwhenever ‖Ã−A‖∞ < δ1. Under the latter ondition, observe that also
∣∣φ̃− φ

∣∣ ≤ 1
2‖(φ̃− φ)η‖Γ(‖φ̃η‖Γ + ‖φη‖Γ)

≤ (t+ − t−)e(t+−t−)‖A‖∞‖Ã−A‖∞‖η‖Γ

(√
2φ̃+

√
2φ

)

≤ 2(t+ − t−)e(t+−t−)‖A‖∞‖Ã−A‖∞
(
e(t+−t−)‖ eA‖∞ φ̃+ e(t+−t−)‖A‖∞φ

)

≤ 2(t+ − t−)e1+2(t+−t−)‖A‖∞‖Ã−A‖∞(φ̃+ φ)

≤ 2C‖Ã−A‖∞φ̃+ C‖Ã−A‖∞
∣∣φ̃− φ

∣∣ ,whih in turn implies that
∣∣φ̃(t) − φ(t)

∣∣ ≤ 4C‖Ã−A‖∞φ̃(t) , ∀t ∈ I , (11)provided that ‖Ã−A‖∞ < δ2 := (2C)−1 < δ1. Combining (10) and (11) yields
˙̃
φ(t) ≤ −2

(
α− 2C(1 + 2α)‖Ã−A‖∞

)
φ̃(t) , ∀t ∈ I ,whenever ‖Ã−A‖∞ < δ2. With δ :=

min(1, α− α̃)

2C(1 + 2α)
> 0 therefore ‖Ã−A‖∞ < δimplies that ˙̃

φ(t) ≤ −2α̃φ̃(t) for all t ∈ I. This establishes (6̃). A ompletelyanalogous argument proves (7̃). Overall, ‖Ã − A‖∞ < δ ensures that (8) ishyperboli on I w.r.t. ‖ · ‖Γ, with invariant projetor P̃ and onstants α̃, β̃. �Remark 1 (i) Note that δ in Lemma 2 depends only on α − α̃, β − β̃, and
t+ − t− + ‖A‖∞. Usually, it is not possible to hoose α̃ = α or β̃ = β, not evenif (3) and (8) are autonomous.(ii) It was shown in [3, Exp.24℄ that, perhaps somewhat surprisingly,

ẏ =

[
0 1
0 0

]
yis hyperboli for every I and Γ. Thus, by Lemma 2,

ẏ =

[
a1 1
a2 a3

]
y (12)is hyperboli as well, provided that maxt∈I

∑3
i=1 |ai(t)| is su�iently small forthe ontinuous funtions a1, a2, a3 : I → R. If so, even though the (possiblytime-dependent) eigenvalues of (12) may be both positive or negative, the rankof any invariant projetor aording to De�nition 1 equals one.The desired robustness result is an immediate onsequene of Lemma 2. Itasserts that hyperboliity aording to De�nition 1 is robust under variationsof the initial data and C1-small perturbations of the right-hand side in (1).



More on �nite-time hyperboliity 29Theorem 3 Assume the solution µ of (1) is hyperboli on I w.r.t. ‖·‖Γ. Thenthere exists δ > 0 suh that for every C1-funtion f̃ : I × U → R
d with

supt∈I

(∥∥f̃
(
t, µ(t)

)
− f
(
t, µ(t)

)∥∥
Γ

+
∥∥Dxf̃

(
t, µ(t)

)
−Dxf

(
t, µ(t)

)∥∥
Γ

)
< δ , (13)every solution µ̃ : I → U of

ẋ = f̃(t, x) (14)is hyperboli as well, provided that ‖µ̃(t0) − µ(t0)‖Γ < δ for some t0 ∈ I.Proof . Given ε > 0, hoose δ1 > 0 so small that
Tδ1 :=

{
(t, x) : t ∈ I, ‖x− µ(t)‖Γ ≤ δ1

}
⊂ I × Uand ‖Dxf̃(t, x)−Dxf̃(t, y)‖Γ <

1
2ε whenever x, y ∈ Tδ1 and ‖x−y‖Γ < δ1. Also,pik δ2 > 0 small enough to ensure that maxt∈I ‖f̃

(
t, µ(t)

)
− f

(
t, µ(t)

)
‖Γ < δ2and ‖x0 − µ(t0)‖ < δ2 for some t0 ∈ I imply that the solution of (14) with

x(t0) = x0 exists for all t ∈ I and satis�es maxt∈I ‖x(t) − µ(t)‖Γ < δ1. With
δ := min(1

2ε, δ1, δ2), it follows from (13) that
∥∥Dxf̃

(
t, µ̃(t)

)
−Dxf

(
t, µ(t)

)∥∥
Γ

≤
∥∥Dxf̃

(
t, µ̃(t)

)
−Dxf̃

(
t, µ(t)

)∥∥
Γ

+
∥∥Dxf̃

(
t, µ(t)

)
−Dxf

(
t, µ(t)

)∥∥
Γ

≤ 1
2ε+ δ < ε ,if only ‖µ̃(t0)− µ(t0)‖Γ < δ for some t0 ∈ I. Sine ε > 0 was arbitrary, Lemma2 applies with A(t) = Dxf

(
t, µ(t)

) and Ã(t) = Dxf̃
(
t, µ̃(t)

). �2 How (not) to detet hyperboliityIf the system (3) is autonomous, then it has a (lassial) exponential dihotomy ifand only if no eigenvalue of A lies on the imaginary axis. It thus seems natural touse eigenvalues as a tool to detet hyperboliity: If the eigenvalues and -vetorsvary su�iently little over time then, hopefully, some insight onerning �nite-time behaviour an be gained from them. In this spirit and for d = 2 and
Γ = id2×2, [6, Thm.1℄ and [9, Thm.1℄ present onditions on the spetral data of
A that ensure �nite-time hyperboliity.Relying on spetral data in a �nite-time ontext does have its pitfalls,though. This fat, already hinted at by Remark 1(ii), is eluidated furtherthrough the following simple example whih is phrased in the terminology of[7℄ so as to make it diretly aessible to readers of that paper. Spei�ally, afamily L = {Lt : t ∈ I} of C1-urves Lt : R → R

d is referred to as a materialline of (1) if it is invariant in the sense that, for any s, t ∈ I,
x0 ∈ Ls(R) if and only if x(t; s, x0) ∈ Lt(R) ;here x(·; s, x0) denotes the unique solution of (1) with x(s) = x0. The obvious�uid dynamial interpretation is that, at eah time t, the set Lt(R) represents a



30 A. Bergersmooth urve of �uid partiles adveted by the veloity �eld f . A material line Lis attrating if for every solution µ of (1) with µ(t) ∈ Lt(R) for some (and heneevery) t ∈ I, there exists α > 0 and a smooth family X of (d − 1)-dimensionalsubspaes, invariant under the linearisation (2) along µ, i.e. Φ(t, s)X(s) = X(t)for all s, t ∈ I, suh that X(t) is, for every t ∈ I, transversal to Tµ(t)Lt(R), and
‖Φ(t, s)x‖ ≤ e−α(t−s)‖x‖ , ∀t ≥ s, x ∈ X(s) . (15)For any κ > 0, onsider now the autonomous linear equation

ẋ =




−1 6 0

0 −7 0
0 0 κ



x . (16)Sine the (x1, x2)-plane and the x3-axis are both invariant under the �owgenerated by (16), orresponding respetively to two negative and one positiveeigenvalue, it seems plausible that e.g. the x3-axis is an attrating material line.In fat, Case 1 of [7, Thm.1℄, asserts that every solution of (16) is ontained inan attrating material line, and hene (16) allows for many attrating materiallines. Plausible though this may be, it is atually not true:Claim 4 No material line of (16) is attrating.To verify this laim, suppose L was an attrating material line of (16) and µa solution in L. Denote by G2,3 the set of all two-dimensional subspaes of
R

3. It follows from (15) that d
dt

1
2‖Φ(t, s)x‖2

∣∣
t=s

≤ −α‖x‖2 for all x ∈ X(s),where X(s) ∈ G2,3 is transversal to Tµ(s)Ls(R). Note that d
dt

1
2‖Φ(t, s)x‖2

∣∣
t=s

=
〈Cx, x〉 with the symmetri matrix

C =




−1 3 0

3 −7 0
0 0 κ



 .Thus Claim 4 will follow immediately one it is demonstrated that
maxx∈X,‖x‖=1〈Cx, x〉 ≥ 0 , ∀X ∈ G2,3. (17)To prove (17), �rst reall the following elementary fat from linear algebra.Proposition 5 Let X 6= {0} be a subspae of R

d, and C,D ∈ R
d×d symmetrimatries with D > 0. Then {〈Cx, x〉 : x ∈ X, 〈Dx, x〉 = 1
}

= [ρ−, ρ+],where ρ+ and ρ− denote, respetively, the largest and smallest eigenvalue of
[〈Cbi, bj〉][〈Dbi, bj〉]−1 ∈ R

l×l, and {b1, . . . , bl} is any basis of X.Denote by Xϑ,ϕ ⊂ R
3 the two-dimensional spae

Xϑ,ϕ =




cosϑ cosϕ
cosϑ sinϕ

sinϑ




⊥

, 0 ≤ ϑ ≤ 1
2π, 0 ≤ ϕ ≤ 2π ;



More on �nite-time hyperboliity 31every X ∈ G2,3 equals Xϑ,ϕ for the appropriate ϑ, ϕ. To apply Proposition5 with D = id3×3 and X = Xϑ,ϕ, dedue from a straightforward omputationthat [〈Cbi, bj〉][〈Dbi, bj〉]−1 is similar to κ id2×2 + E1E2, where
E1 = −κ id2×2+

[
−1 3

3 −7

]
, E2 =

[
1 − cos2 ϑ cos2 ϕ − cos2 ϑ cosϕ sinϕ
− cos2 ϑ cosϕ sinϕ 1 − cos2 ϑ sin2 ϕ

]
.It follows that the maximum of {〈Cx, x〉 : x ∈ Xϑ,ϕ, ‖x‖ = 1

} is κ+ τ , with τdenoting the largest zero of the quadrati funtion
pϑ,ϕ : t 7→ t2+

(
2(κ+4)−cos2 ϑ

(
κ+4−3

√
2 sin(2ϕ+ 1

4π)
))
t+(κ2+8κ−2) sin2 ϑ .If 0 < κ ≤ 3

√
2 − 4 then pϑ,ϕ(0) ≤ 0 and hene τ ≥ 0. On the other hand,

pϑ,ϕ(3
√

2 − 4 − κ) = 3
√

2(3
√

2 − 4 − κ) cos2 ϑ
(
1 + sin(2ϕ+ 1

4π)
)
≤ 0whenever κ > 3

√
2 − 4, so that κ+ τ ≥ 3

√
2 − 4 in this ase. Overall therefore

maxx∈X,‖x‖=1〈Cx, x〉 ≥ min(κ, 3
√

2 − 4) > 0 , ∀X ∈ G2,3 .Clearly, this strengthened form of (17) proves Claim 4.Remark 2 (i) A straightforward omputation on�rms that (16) is hyperboliw.r.t. ‖ · ‖ if and only if t+ − t− < 1
6 log 9+4

√
2

7 ≈ 0.1232. In this ase, the rankof any invariant projetor for (16) aording to De�nition 1 equals one, and nottwo as might be expeted.(ii) If A is onstant and has no eigenvalue on the imaginary axis, then therealways exist unountably many Γ = Γ⊤ > 0 suh that (3) is hyperboli w.r.t.
‖·‖Γ on every ompat interval I, see [1, Rem.2℄ and [2, Thm.2.9℄. For example,(16) is hyperboli on every I w.r.t. ‖ · ‖Γ, where

Γ =




1 1 0
1 2 0
0 0 1



 .Moreover, if the de�nition of attrativity is adapted in that ‖ · ‖ in (15) isreplaed by ‖ · ‖Γ, then every trajetory of (16) is indeed ontained in anattrating material line. Not restriting oneself to the Eulidean norm maythus be bene�ial even in the most elementary of irumstanes.(ii) The reader may wonder exatly whih part of the alleged proof of [7,Thm.1℄ is problemati. The answer is simple: As the above example shows,linear hanges of oordinates do generally not preserve �nite-time hyperboliity,not even if they are time-independent. Conretely, x = My with the appropriatenon-singular matrix M transforms (16) into ẏ = diag [−1,−7, κ], for whih e.g.every trajetory not ontained in the (y1, y2)-plane, and hene in partiular the
y3-axis is an attrating material line.(iv) The usage of time-dependent spetral data to detet �nite-timehyperboliity an be avoided altogether. Based on a dynami partition of
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RECENT RESULTS ON NON�AUTONOMOUS DISCRETESYSTEMSJOSE S. CÁNOVASUniversidad Politénia de Cartagena,Departamento de Matemátia Apliada y Estadístia.C/ Dotor Fleming sn. 30202 Cartagena (Spain)jose.anovas�upt.esAbstratThe aim of this paper is to present some reent results onerningnon�autonomous disrete systems (non�autonomous order one di�ereneequations) and state some problems that arise in this �eld.Key words: Non�autonomous disrete systems, non�autonomous di�ereneequations, dynamial systems, Li�Yorke haos.AMS subjet lassi�ations: 37B40, 37B55, 39A, 37E05, 26A18.1 IntrodutionLet X be a ompat metri spae and onsider a sequene of ontinuous maps

fn : X → X , n ∈ N, denoted by f1,∞ = (fn)∞n=1. This sequene de�nesa non�autonomous disrete system (X, f1,∞). The orbit of any x ∈ X isgiven by the sequene (fn
1 (x)) = Orb(x, f1,∞), where fn

1 = fn ◦ ... ◦ f1 for
n ≥ 1, and f0

1 is the identity map. If fn = f for any n ∈ N, then the pair
(X, f) is an autonomous disrete dynamial system. We point out that allde�nitions that we will introdue in this paper for the non�autonomous asehave an autonomous well�known equivalent de�nition in the setting of disretedynamial systems.Non�autonomous disrete systems where introdued in [20℄, although theyalso have appeared onneted to some non�autonomous di�erene equations(see [14℄ or [15℄). Note that the orbit of x ∈ X is given by the solution of thenon�autonomous di�erene equation

{
xn+1 = fn(xn),
x1 = x.It is obvious that, if we do not add any ondition on the sequene f1,∞, ingeneral we annot haraterize the behavior of the orbits of the system. So, we33



34 J. Cánovasare going to present some partiular ases of non�autonomous disrete systemsfor whih something an be said on this behavior.The set of limit points of an orbit Orb(x, f1,∞) is the ω�limit set of x, whihis denoted by ω(x, f1,∞). A point x ∈ X is said to be reurrent if x ∈ ω(x, f1,∞).We denote by Λ(f1,∞) = ∪x∈Xω(x, f1,∞). Finally, x ∈ X is a non�wanderingpoint if for any open neighborhood U of x, there is a positive integer n suhthat fn
1 (U) ∩ U 6= ∅. Note that

R(f1,∞) ⊆ ω(f1,∞) ⊆ Ω(f1,∞),where R(f1,∞) and Ω(f1,∞) denote the sets of reurrent and non�wanderingpoints, respetively.The paper is organized as follows. In the next setion we analyze someresults onerning periodi sequenes of maps. Later on, we study dynamiproperties of sequenes whih onverge uniformly to ontinuous maps. Finally,in the last setion we show some results onerning the dynamial omplexityof the last lass of sequenes of maps.2 Periodi sequenesLet us assume the existene of a minimal positive integer k suh that fn+k = fnfor all n ≥ 1, and therefore, the sequene f1,∞ is periodi. The interest for suhsequenes omes from biologial and eonomial sienes. Let us emphasizethat some sientists working on population dynamis use suh kind of systemsto model the population growth of speies under some periodi hanges in theenvironment (see e.g. [9℄ and [15℄). On the other hand, periodi sequenesof period k = 2 are deeply onneted to duopoly models. A duopoly is amarket in whih two �rms produe the same or equivalent goods. Hene, thefuture prodution are given by the so�alled reation funtions fi, i = 1, 2. Insome ases, suh reation funtions have an one dimensional domain and theprodutions are given by the systems (f1, f2, f1, f2, ...) and (f2, f1, f2, f1, ...),respetively (see e.g. [21℄, [22℄ and [24℄).It is just simple to prove that for any x ∈ X ,
ω(x, f1,∞) = ω(x, fk ◦ ... ◦ f1) ∪ ω(f1(x), f1 ◦ fk ◦ ... ◦ f2)

∪... ∪ ω(fk−1
1 (x), fk−1 ◦ ... ◦ f1 ◦ fk),and hene one an wonder whether the behavior of f1,∞ an be dedued fromthe behavior of the ompositions fk ◦ ...◦f1, f1◦fk◦ ...◦f2, ... and fk−1◦ ...f1◦fk.This idea produes others positive results. For instane, in [20℄ it is proved that

h(f1,∞) =
1

k
h(fk ◦ ... ◦ f1) = ... =

1

k
h(fk−1 ◦ ... ◦ f1 ◦ fk),where h(f1,∞) is the topologial entropy of f1,∞, whih is a measure of thedynamial omplexity of a system. Additionally, in [10℄, the haraterizationof metri attrators (roughly speaking sets whih are ω�limit sets of almost all
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x ∈ [0, 1]) of periodi of order two where the maps have negative Shwarzianderivative1 have been investigated. The same authors investigate in [11℄ thePithfork bifuration in these kind of systems. Finally, in [1℄ a haraterizationof periodi solutions of one dimensional non�autonomous di�erene equationshas been found in terms of the Sharkovsky's result for one dimensional maps(see e.g. [26℄ and for a simple proof see [12℄).However, we must point out that the above ompositions may need not havethe same dynami properties (see e.g. [4℄ or [8℄). Additionally, some dynamiproperties of a sequene f1,∞ annot be obtained from the above ompositions;for instane, the existene of periodi orbits of odd period of a non�autonomoussystem f1,∞ = (f1, f2, f1, f2, ...) de�ned on the unit interval [0, 1] annot bededued from the periodi orbits of f1 ◦ f2 and f2 ◦ f1 (see [7℄).Even when the ompositions of maps f1, ..., fk an desribe a dynamialproperty of f1,∞, sometimes it is not good in pratie. For instane, it is well�known that the logisti family fµ(x) = µx(1−x), x ∈ [0, 1] and µ ∈ [1, 4], has a�xed point whih is an attrator for all orbits in (0, 1) in the ase that 1 ≤ µ ≤ 3.It is an open question (see [14℄) to hek the onditions of the parameters µi,
i = 1, ..., k, suh that the periodi sequene (fµ1 , ..., fµk

, ...) has a periodi orbitof period k whih also is an attrator for all trajetories in (0, 1). Of ourse,this periodi orbit (x1, x2, ..., xk, ...) has to satisfy
|f ′

µ1
(x1)f

′
µ2

(x2)...f
′
µk

(xk)| < 1,but the family of parameters whih makes possible the above equality is verydi�ult to haraterize in pratie.A similar problem an be found in [23℄, where an eonomi model ispresented. This model is given by a periodi sequene (f1, ..., fk, ...) and allmaps have the same �xed point, whih is usually alled the Cournot equilibrium.The loal stability of this point is very important in the miroeonomi theory.The loal equilibrium x0 ∈ R
n will be stable provided the Jaobian matrix

J(fk ◦ ... ◦ f1)(x0) = J(fk)(x0) · J(fk−1)(x0) · ... · J(f1)(x0)has spetral radius smaller than one. But in pratie this is impossible to verifyfrom J(fi)(x0), i = 1, ..., k, beause these matries have spetral radius at leastone. So, heking the stability of the Cournot equilibrium is a di�ult tehnialproblem.3 Convergent sequenesNow, assume that the sequene f1,∞ onverges uniformly to a ontinuous map
f . In general, it is not true that an ω�limit set ω(x, f1,∞) is also an ω�limit setof f ; for example, from [16℄ an be onstruted a sequene f1,∞, whih onvergesto the identity on [0, 1], and suh that there are x ∈ [0, 1] with the propertythat ω(x, f1,∞) = [0, 1], while any ω�limit set of the limit map is a single point.1The Shwarzian derivative of a good enough map f is Sf(x) =

f ′′′(x)
f ′(x)

−

3
2

“

f ′′(x)
f ′(x)

”2.



36 J. CánovasHowever, we an introdue some results whih haraterize these ω�limit sets.The next one an be seen in [19℄.Theorem 1 Let fn : X → X be ontinuous suh that fn onverges uniformlyto f . Then:(a) For any x ∈ X, the set ω(x, f1,∞) is ompat and strongly invariant by f[f(ω(x, f1,∞)) = ω(x, f1,∞))℄.(b) Let X = [0, 1] and assume that every periodi orbit of f is a �xed point.Then for any x ∈ I, ω(x, f1,∞) = [a, b] ⊂ F(f), 0 ≤ a ≤ b ≤ 1, , where
F(f) denotes the set of �xed points of f .If we onsider additional properties for the limit map f , we an improvethe last result. Let δ > 0. A sequene xn is a δ�pseudo orbit of f if

d(xn+1, f(xn)) < δ for n ≥ 1. Given ε > 0, we say that Orb(x, f) ε�shadows
xn if d(xn, f

n(x)) < ε for n ≥ 1. The map f has the shadowing property iffor any ε > 0 there is δ > 0 suh that any δ�pseudo orbit is ε�shadowed by anorbit of f (see [2℄ or [17℄). The map f has the limit shadowing property (see[13℄) if limn→∞ d(xn+1, f(xn)) = 0, whih implies that there is x ∈ X suh that
limn→∞ d(xn, f

n(x)) = 0. With this notation, the following results from [5℄ anbe understood.Theorem 2 Assume f1,∞ = (fn), fn : X → X ontinuous for all n,onverges uniformly to f whih has the shadowing property. Then any limitpoint of any trajetory of f1,∞ is in Ω(f). In addition, if f has the limitshadowing property, then for any x ∈ X, there is z ∈ X suh that ω(x, f1,∞) =
ω(z, f).In the interval ase, we an state a stronger result.Theorem 3 Assume f1,∞ = (fn) is a sequene on ontinuous interval mapsonverging uniformly to f , whih has the shadowing property. Then for any
x ∈ [0, 1] there is z ∈ [0, 1] suh that ω(x, f1,∞) = ω(z, f).It is unlear whether Theorem 3 holds when the phase spae is not theompat interval. We onjeture that it remains true for ontinuous tree andgraph maps, but it is false in general for maps de�ned on two�dimensionalspaes. Finally, it is also interesting to investigate what onditions are neessaryto get reurrene, that is, when is non�empty R(f1,∞)?4 Chaos and related notionsIn the seminal paper [20℄ the following result onerning the topologial entropy
h(f1,∞) an be found.Theorem 4 Let fn : X → X be ontinuous suh that fn onverges uniformlyto f . Then:

h(f1,∞) ≤ h(f).



Reent results on non�autonomous disrete systems 37Sine the topologial entropy of a map is a measure of the dynamialomplexity of suh map (see e.g. [3℄), the above result suggests the generalidea that if f is simple then f1,∞ is also simple, and the omplexity of f1,∞ willimply the omplexity of f . As we will see, this idea is false for Li�Yorke haos.One of the most well�known de�nition of haos in disrete dynamial systemsis due to Li and Yorke (see [25℄). A non�autonomous disrete system f1,∞ issaid to be haoti in the sense of Li�Yorke if there is an unountable subset
S ⊂ I suh that for any x, y ∈ S, x 6= y, it is held that

lim inf
n→∞

|fn
1 (x) − fn

1 (y)| = 0and
lim sup

n→∞
|fn

1 (x) − fn
1 (y)| > 0.The set S is alled a srambled set of f1,∞. Note that when fn = f , thisde�nition agrees with the lassial de�nition of Li�Yorke in the ase of disretedynamial systems.Let us start with the negative results. It an be dedued from [16℄ theexistene of a sequene f1,∞ haoti in the sense of Li and Yorke, whihonverges uniformly to the identity. That is, the limit map is simple whilethe non�autonomous system f1,∞ is ompliated.Continuous interval maps whih are not haoti in the sense of Li�Yorke arein fat dynamially simple. Reall that x ∈ I is periodi if there is k ∈ N suhthat fk(x) = x. We say that an orbit Orb(x, f) is approximated by periodiorbits if for any ǫ > 0 there are n0 ∈ N and a periodi point x0 suh that

|fn(x) − fn(x0)| < ǫ for all n ≥ n0. Then it is proved in [18℄ and [27℄ that aninterval map is either Li�Yorke haoti or any orbit is approximated by periodiorbits. We an refer the omplexity of f1,∞ to the omplexity of f as follows(see [6℄).Theorem 5 Let f1,∞ be a sequene of surjetive ontinuous interval mapsonverging to a map f .(a) If the map f has positive topologial entropy, then f1,∞ is Li�Yorkehaoti.(b) If the map f has the shadowing property, then f1,∞ is Li�Yorke haoti ifand only if f is Li�Yorke haoti.Note that Li and Yorke haoti maps with zero topologial entropy have notthe shadowing property (see [17℄). So, does suh kind of maps satisfy Theorem5? More preisely, if f1,∞ onverges to a haoti map f with zero topologialentropy, is f1,∞ also haoti in the Li�Yorke sense?With the shadowing property hypothesis, we an state the following, whihis a dihotomy between simpliity and omplexity for this kind of sequenes.



38 J. CánovasTheorem 6 Assume that the sequene of surjetive ontinuous interval maps
f1,∞ onverges uniformly to a map f whih has the shadowing property. Then
f1,∞ is either Li�Yorke haoti or for any x ∈ [0, 1] and ǫ > 0 there is a periodipoint y of f , and n0 ∈ N suh that |fn

1 (x) − fn
1 (y)| < ǫ for any n ≥ n0.Surjetivity ondition in Theorems 5 and 6 is an easy way to avoidthe existene of the next ritial example. Consider the sequene f1,∞ =

(g, f, f, f, ...) where g(x) = 0 and f(x) = 4x(1 − x) for x ∈ [0, 1]. Then f1,∞onverges uniformly to f , whih is a haoti map, but all the orbits of f1,∞ areeventually onstant to 0. It is an open question to �nd another non�drastionditions that guarantee the validity of suh results.The number of non-equivalent de�nitions of haos and simpliity for disretedynamial systems is huge (see for example several of them in [3℄). So, it is anatural question to wonder when similar results to Theorems 5 and 6 are truefor these haos de�nitions. Additionally, it is also natural to wonder about thesequestion when the sequene f1,∞ does not onverge uniformly to any ontinuouslimit map f .AknowledgmentsThis paper has been partially supported by the grants MTM2008�03679/MTMfrom Ministerio de Cienia e Innovaión (Spain) and FEDER (Fondo Europeode Desarrollo regional) and 08667/PI/08 from Fundaión Sénea (ComunidadAutónoma de la Región de Muria, Spain).Referenes[1℄ Z. AlSharawi, J. Angelos, S. Elaydi and L. Rakesh, An extension ofSharkovsky's theorem to periodi di�erene equations, J. Math. Anal. Appl.316 (2006), 128�141.[2℄ N. Aoki and K. Hiraide, Topologial theory of dynamial systems, reentadvanes, North Holland 1994.[3℄ L.S. Blok and W.A. Coppel, Dynamis in one dimension, Leture Notes inMath. 1513, Springer, Berlin (1992).[4℄ F. Balibrea, J. S. Cánovas Peña and V. Jiménez López, Commutativity andnon�ommutativity of the topologial sequene entropy, Ann. Inst. Fourier(Grenoble) 49 (1999), 1693�1709.[5℄ J. S. Cánovas, On ω-limit sets of non-autonomous disrete systems. J.Di�erene Equ. Appl. 12 (2006), 95�100.[6℄ J. S. Cánovas, Li-Yorke haos in a lass of nonautonomous disrete systems,J. Di�erene Equ. Appl. (to appear).[7℄ J. S. Cánovas and A. Linero, Periodi struture of alternating ontinuousinterval maps, J. Di�erene Equ. Appl. 12 (2006), 847�858.
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42 H. Crauel, P.E. Kloeden, J. Real2 Paraboli PDE on time-varying domainsLet O be a nonempty bounded open subset of R
N with C2 boundary ∂O, and

r = r(y, t) a vetor funtion
r ∈ C1(O × [0,∞); RN ), (1)suh that

r(·, t) : O → Ot := r(O, t) is a C2-di�eomorphism for all t ∈ [0,∞). (2)We de�ne
Q :=

⋃

t∈(0,+∞)

Ot × {t},

Σ :=
⋃

t∈(0,+∞)

∂Ot × {t}.The set Q is an open subset of R
N+1, with boundary

∂Q = Σ ∪ (O0 × {0}).We will also assume that the funtion r̄ = r̄(x, t), where r̄(·, t) = r−1(·, t)denotes the inverse of r(·, t), satis�es
r̄ ∈ C2,1(Q̄; RN ), (3)i.e., r̄, ∂r̄

∂t
, ∂r̄
∂xi

and ∂2r̄

∂xi∂xj
belong to C(Q̄; RN ), for all 1 6 i, j 6 N.We onsider the following initial boundary value problem for anonlinear paraboli partial di�erential equation of reation-di�usion type withhomogeneous Dirihlet boundary ondition,





∂u

∂t
− ∆u+ f(u) = 0 in Q,

u = 0 on Σ,

u(x, 0) = u0(x), x ∈ O0,

(4)where u0 : O0 → R and f ∈ C1(R) are given. We will assume that f satis�esthat there exist nonnegative onstants α1, α2, β and l, and p > 2, suh that
−β + α1|s|p 6 f(s)s 6 β + α2|s|p ∀ s ∈ R (5)and

f ′(s) > −l ∀ s ∈ R. (6).



SPDE on time varying domains 43Following [6℄, we set
v(y, t) = u(r(y, t), t) for y ∈ O, t ≥ 0,or, equivalently,
u(x, t) = v(r̄(x, t), t) for x ∈ Ot, t ≥ 0.Then, the PDE (4) an be transformed to (see also [5℄)





∂v

∂t
(y, t) −

N∑
k,j=1

∂v

∂yj
(ajk(y, t)

∂v

∂yk
(y, t)) + b(y, t) · ∇yv(y, t) + f(v(y, t)) = 0in O × (0,∞),

v = 0 on ∂O × (0,∞),

v(y, 0) = u0(r(y, 0)), y ∈ O, (7)where · denotes the inner produt of R
N ,

ajk(y, t) =
N∑

i=1

∂r̄k
∂xi

(r(y, t), t)
∂r̄j
∂xi

(r(y, t), t), j, k = 1, · · · , N ;and b(y, t) = (b1(y, t), · · · , bN(y, t)) ∈ R
N is de�ned by

bk(y, t) =
∂r̄k
∂t

(r(y, t), t) − ∆xr̄k(r(y, t), t) +

N∑

j=1

∂ajk

∂yj
(y, t), k = 1, 2, · · · , N.The proof of the following result an be seen in [5℄.Lemma 1 For any 0 < T < ∞, ajk ∈ C1(O × [0, T ]), bk ∈ C0(O × [0, T ]). Inpartiular, ajk,

∂ajk

∂yj
, bk ∈ L∞(O × (0, T )), j, k = 1, 2, · · · , N .Moreover, there exists a δ = δ(r, T ) > 0 suh that for any (y, t) ∈ O× [0, T ],
N∑

j,k=1

ajk(y, t)ξjξk > δ|ξ|2 for all ξ ∈ R
N .The existene and uniqueness solutions of the above PDE were establishedin [5℄, see also [4℄.3 A stohasti proess on variable domainsConsider �xed a probability spae (Ω,F , P ) and a sequene {βj(t) : t ≥ 0}j≥1of mutually independent normalized real Wiener proesses de�ned on it.



44 H. Crauel, P.E. Kloeden, J. RealLet {φj}j≥1 ⊂ L2(O) be a sequene of funtions suh that
∞∑

j=1

‖φj‖2
L2(O) <∞, (8)and de�ne

ψj(x, t) := φj(r̄(x, t)) x ∈ Ot, t ∈ [0,∞), j = 1, 2, .... (9)Observe that
‖ψj(t)‖2

L2(Ot)
=

∫

Ot

(φj(r̄(x, t)))
2 dx (10)

=

∫

O
(φj(y))

2Jac(r, y, t) dy

≤ Cr,t‖φj‖2
L2(O)for any t ∈ [0,∞), where we have denoted Jac(r, y, t) the absolute value of thedeterminant of the Jaobi matrix ( ∂ri

∂yj
(y, t)

)

N×N
, and

Cr,t := max
y∈O

Jac(r, y, t).We onsider the proess
M(t) :=

∞∑

j=1

βj(t)ψj(t) t ≥ 0. (11)Let us denote by E the expetation with respet the probability P . Observethat, thanks to the pairwise independene of the βj , for any t ≥ 0 and integers
m > n ≥ 1, we have

E

∥∥∥∥∥∥

m∑

j=n

βj(t)ψj(t)

∥∥∥∥∥∥

2

L2(Ot)

= t

m∑

j=n

‖ψj(t)‖2
L2(Ot)

,and therefore, by (8) and (10), the equality (11) de�nes for any t ≥ 0 an element
M(t) ∈ L2(Ot ×Ω) whih is Ft-measurable, where Ft is the sub-σ-algebra of Fgenerated by the random variables {βj(s) : s ∈ [0, t], j ≥ 1}.Thus {M(t) : t ≥ 0} an be viewed as an Ft-adapted proess with values in
L2(Ot). Observe that

EM(t) = 0
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E‖M(t)‖2

L2(Ot)
= t

∞∑

j=1

‖ψj(t)‖2
L2(Ot)

≤ tCr,t

∞∑

j=1

‖φj‖2
L2(O)for all t ≥ 0.4 A Stohasti PDE on time-varying domainsWe now onsider the additive noise version of (4), i.e., the stohasti paraboliPDE with additive noise and homogeneous Dirihlet boundary ondition,






dU(t) = [∆U(t) − f(U(t))] dt+ dM(t) in Q

U = 0 on Σ,

U(x, 0) = u0(x), x ∈ O0.

(12)Here we interpret dM(t) as follows. Assuming enough regularity for the φj ,formally we obtain from (11)
dM(t) =

∞∑

j=1

ψj(t)dβj(t) +

∞∑

j=1

βj(t)
∂ψj

∂t
(t)dt,where

∂ψj

∂t
(x, t) =

∂

∂t
(φj(r̄(x, t)))

= ∇yφj(r̄(x, t)) ·
∂r̄

∂t
(x, t).Thus,

dM(x, t) =
∞∑

j=1

φj(r̄(x, t))dβj(t) +
∞∑

j=1

βj(t)∇yφj(r̄(x, t)) ·
∂r̄

∂t
(x, t)dt. (13)Now, making the hange

V (y, t) = U(r(y, t), t) for y ∈ O, t ≥ 0,or, equivalently,
U(x, t) = V (r̄(x, t), t) for x ∈ Ot, t ≥ 0, (14)and using (13), the problem (12) is transformed in the following problem on Q:



46 H. Crauel, P.E. Kloeden, J. Real





dV (y, t) =

[
N∑

k,j=1

∂

∂yj
(ajk(y, t)

∂V

∂yk
(y, t) − b(y, t) · ∇yV (y, t)

+f(V (y, t)) +R(y, t)] dt+ dW (y, t)in O × (0,∞),

V = 0 on ∂O × (0,∞),

V (y, 0) = u0(r(y, 0)), y ∈ O,

(15)
where

W (y, t) :=

∞∑

j=1

φj(y)βj(t),and
R(y, t) :=

∞∑

j=1

βj(t)∇yφj(y) ·
∂r̄

∂t
(r(y, t), t).Observe �rst that by (8) and the independene of the βj , the proess

W (t) := W (·, t) is a Wiener proess with values in L2(O). For the onvergeneof R(t) := R(·, t) we need some additional assumptions on the φj . More exatly,we will assume that
{φj}j≥1 ⊂ H1(O) and ∞∑

j=1

‖φj‖2
H1(O) <∞. (16)Under this assumption, R(t) is a well de�ned proess with values in L2(O),and more exatly

E‖R(t)‖2
L2(O) ≤ tmax

y∈O
|∂r̄
∂t

(r(y, t), t)|2
RN

∞∑

j=1

‖φj‖2
H1(O) ∀ t ≥ 0.Thus, R(t) is an Ft-adapted proess belonging to L∞(0, T ;L2(Ω × O) for all

T > 0.Thus, taking into aount Lemma 1, from the results for nonlinear monotoneSPDE obtained in [9℄ (see also [10℄) we get existene and uniqueness ofvariational solution for problem (15). More exatly, we have:Theorem 2 Under the assumptions (1), (2), (3), (5), (6) and (16), for any
u0 ∈ L2(O) there exists a unique Ft-adapted proess
V ∈ L2(Ω × (0, T );H1

0 (O)) ∩ Lp(Ω × (0, T );Lp(O)) ∩ L2(Ω;C([0, T ];L2(O)))



SPDE on time varying domains 47for all T > 0, variational solution of (15), i.e., suh that
V (ω, y, t) = u0(r(y, 0)) +W (ω, y, t)

+

∫ t

0




N∑

k,j=1

∂

∂yj
(ajk(y, s)

∂V

∂yk
(ω, y, s) − b(y, s) · ∇yV (ω, y, s)

+f(V (ω, y, s)) +R(ω, y, s)] dsfor all t ≥ 0, P -a.s. in Ω, where the equality must be understood in the sense of
H−1(O) + Lp′

(O).Then, the proess U given by (14) an be interpreted as the unique solutionof (12).Existene of random attrators (as in [3℄) will be onsidered elsewhere.Referenes[1℄ S. Bonaorsi and G. Guatteri, A variational approah to evolution problemswith variable domains. J. Di�erential Equations, 175 (2001), 51�70.[2℄ G. Da Prato and J. Zabzyk, Stohasti equations in in�nite dimensions,Cambridge University Press, Cambridge 1992.[3℄ P.E. Kloeden and J.A. Langa, Flattening, squeezing and the existene ofrandom attrators. Pro. Roy. So. London A, 463 (2007), 163�181.[4℄ P.E. Kloeden, P. Marín-Rubio and J. Real, Pullbak attrators for asemilinear heat equation in a non-ylindrial domain. J. Di�erentialEquations, 244 (2008), 2062�2090.[5℄ P.E. Kloeden, J. Real and Chunyou Sun, Pullbak attrators for a semilinearheat equation on time-varying domains. J. Di�erential Equations, 246(2009), 4702�4730.[6℄ J. Límao, L.A. Medeiros and E. Zuazua, Existene, uniqueness andontrollability for paraboli equations in non-ylindrial domains. Mat.Contemp., 23 (2002), 49�70.[7℄ G.M. Lieberman, Seond order paraboli di�erential equations. WorldSienti�, Singapore 1996.[8℄ J.L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Paris 1969.[9℄ E. Pardoux, Équations aux dérivées partielles stohastiques non linéairesmonotones. Thèse, Université Paris XI, 1975.[10℄ E. Pardoux, Stohasti partial di�erential equations and �ltering ofdi�usion proesses. Stohastis 3 (1979), 2, 127�167.



48 H. Crauel, P.E. Kloeden, J. Real[11℄ C. Prévot and M. Rökner, A onise ourse on stohasti partialdi�erential equations. Springer-Verlag, Berlin 2007).[12℄ G. Savaré, Paraboli problems with mixed variable lateral onditions: anabstrat approah. J. Math. Pures Appl., 76 (1997), 4, 321�351.
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GENERALIZATION OF THE FUCIK-KUFNER RESULT WITHAPPLICATIONS TO OBSTACLE PROBLEMSTHOMAS EKHOLM, SªAWOMIR JAGODZI�SKI,ANNA OLEK AND KUBA SZCZEPANIAKLund University, Box 117, S-221 00 Lund, SwedenCentre of Mathematis and Physis, Tehnial University of �ód¹al. Politehniki 11, 90-924 �ód¹, Polandslawjago�p.lodz.plAbstratIn this paper we present an extension of the Fuik-Kufner result [3℄ to thease of n-variational inequalities in a Hilbert spae. Then we adapt thatextension to simplify derivation of useful inequalities onerning solutionsof various types of ellipti obstale problems.Key words: Variational inequality, obstale problems.AMS subjet lassi�ations: 49J401 IntrodutionIn the 1970's there was onsiderable interest in the analysis of obstale problems.This was onneted with the development of researh on variational inequalitiesand has been studied by many authors (see [7℄, [10℄ and referenes therein).The majority of results onentrated on, natural from a mathematial point ofview, problems of existene and uniqueness of the solutions. However, in ase ofvariational inequalities orresponding to obstale problems additional questionsregarding e.g. the regularity of the solutions ([5℄, [6℄) or onvergene of thesolutions ([4℄, [9℄) or omparing of the solutions an be posed. These problemsseem to be interesting due to possible appliations.Comparison theorems for the solutions of the global obstale problems wereintrodued by H. Brezis [1℄, G. Duvant, J. Lions [2℄ and U. Moso [8℄. Howeverthose results allowed the omparison of the di�erent solutions of obstaleproblems of the same type.Fuik-Kufner theorem [7℄ desribes the onstrutive approah for theomparison of the two solutions of di�erent variational inequalities.The generalization presented here seems to represent a very simple, uni�edand straightforward method for omparing solutions of various types of obstaleproblems simultaneously. 49



50 T. Ekholm, S. Jagodzi«ski, A. Olek, K. Szzepaniak2 Comparison theoremFirstly, we artiulate and prove the following result representing thegeneralization of the Fuik-Kufner theorem [7℄ for the ase of n variationalinequalities.Theorem 1 Let {Ki}n
i=1 be nonempty, losed, onvex subset of a Hilbertspae H, f be a funtional in the dual spae H∗, a(·, ·) a oerive, bilinearform de�ned on H ×H and ui ∈ Ki be the solution of the variational problem:Find u suh that

a(u, v − u) ≥ 〈f, v − u〉 for any v ∈ Ki, (1)Let wi ∈ Ki for i = 1, 2, . . . , n suh that
w1 + w2 + . . .+ wn = u1 + u2 + . . .+ unand

n∑

i=1,i6=k

a(uk − wi, ui − wi) = 0,for some k, then wi = ui for i = 1, 2, . . . , n.Proof . Put v = wi in (1)




a(u1, w1 − u1) ≥ 〈f, w1 − u1〉
a(u2, w2 − u2) ≥ 〈f, w2 − u2〉... ...
a(un, wn − un) ≥ 〈f, wn − un〉Let us sum

n∑

i=1

a(ui, wi − ui) ≥ 〈f, w1 + . . .+ wn − u1 − . . .− un〉 = 〈f, 0〉 = 0,sine f is a linear funtional. We alulate as follows
0 ≤

n∑

i=1

a(ui, wi − ui) =

n∑

i=1,i6=k

a(ui, wi − ui) + a(uk, wk − uk)

=

n∑

i=1,i6=k

a(ui, wi − ui) + a(uk,

n∑

i=1,i6=k

(ui − wi))

=
n∑

i=1,i6=k

a(ui, wi − ui) +
n∑

i=1,i6=k

a(uk, ui − wi)

=

n∑

i=1,i6=k

a(uk − ui, ui − wi) =

n∑

i=1,i6=k

a(uk − wi + wi − ui, ui − wi)
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=

n∑

i=1,i6=k

a(uk − wi, ui − wi) +

n∑

i=1,i6=k

a(wi − ui, ui − wi)

= −
n∑

i=1,i6=k

a(wi − ui, wi − ui) ≤ −
n∑

i=1,i6=k

µ ‖ ui − wi ‖2,where µ > 0 is the onstant of oeriveness. This means that every norm mustbe zero, hene
w1 = u1, w2 = u2, . . . , wn = un.

�In the next hapter we present an appliation of the above result, wherewe ompare solutions of three di�erent types of obstale problems. It is worthpointing out that due to this result it will be possible to obtain suh omparisonssimultaneously.3 AppliationWe start with introduing some basi notations onneted with obstaleproblems.Let Ω ⊂ R
n be an open, bounded set with the boundary ∂Ω of C1,1 lass,L is an ellipti operator

L = −
n∑

i,j=1

∂

∂xj
(aij(x)

∂

∂xi
)with oe�ients aij : Ω → R, aij ∈ C1(Ω) for 1 ≤ i, j ≤ n, whih satisfy theelliptiity ondition i.e. there exists a positive onstant µ suh that

n∑

i,j=1

aij(x)ξiξj ≥ µ|ξ|2 for x ∈ Ω, ξ ∈ R
n.The operator L for u, v ∈ H1

0 (Ω) determines (see [7℄) the bilinear, ontinuousand oerive form on H1
0 (Ω), in the following way

〈Lu, v〉 = a(u, v) =

n∑

i,j=1

∫

Ω

aij(x)uxi
(x)vxj

(x)dx.One version of an obstale problem is to �nd the solution to the variationalinequality
a(u, v − u) ≥ 〈f, v − u〉 , ∀v ∈ K,where f ∈ H−1(Ω) and K is a so-alled admissible set whose de�nition dependson the type of the obstale problem onsidered.



52 T. Ekholm, S. Jagodzi«ski, A. Olek, K. SzzepaniakLet ψ, ϕ ∈ H1,p(Ω), ψ ≤ ϕ on Ω, ψ ≤ 0 on ∂Ω and ϕ ≥ 0 on ∂Ω. We de�nethe sets
K1 = {v ∈ H1

0 (Ω) : ψ ≤ v in Ω},
K2 = {v ∈ H1

0 (Ω) : ψ ≤ v ≤ ϕ in Ω},
K3 = {v ∈ H1

0 (Ω) : v ≤ ϕ in Ω}.It is well known (see [10℄) that there exist the unique solutions of obstaleproblems with the admissible set K1, K2 or K3, respetively.Now we show some relations between solutions of the above obstaleproblems. Let us de�ne
w1 = max(u1, u2),

w2 = u1 + u2 + u3 − w1 − w3,

w3 = min(u2, u3).We see that u1 + u2 + u3 = w1 + w2 + w3 and
a(u2 − w1, u1 − w1)+a(u2 − w3, u3 − w3)

=a(u2 − max(u1, u2), u1 − max(u1, u2))+a(u2 − min(u2, u3), u3 − min(u2, u3))

=a(min(u2 − u1, 0),min(0, u1 − u2))+a(max(0, u2 − u3),max(u3 − u2, 0))

=a(max(u1 − u2, 0),−min(u1 − u2, 0)+a(max(u2 − u3, 0),−min(u2 − u3, 0))

=a
(
(u1 − u2)

+, (u1 − u2)
−)+a

(
(u2 − u3)

+, (u2 − u3)
−)

=

∫

Ω

n∑

i,j=1

aij(x)(u1 − u2)
+
xi

(u1 − u2)
−
xj
dx

+

∫

Ω

n∑

i,j=1

aij(x)(u2 − u3)
+
xi

(u2 − u3)
−
xj
dx = 0.Finally we must show that wi ∈ Ki for i = 1, 2, 3. One an notie that

w1 =

{
u1 ≥ ψ, if u1 ≥ u2

u2 ≥ ψ, if u1 < u2,thus, w1 ∈ K1.
w2 =






u1 , if u2 > u1 and u2 ≥ u3 ⇒ ψ ≤ u1 < u2 ≤ ϕ

u1 + u3 − u2 , if u3 > u2 > u1 ⇒ ψ ≤ u1 < u1 + u3 − u2 < u3 ≤ ϕ

u2 , if u1 ≥ u2 ≥ u3 ⇒ ψ ≤ u2 ≤ ϕ

u3 , if u1 ≥ u2 and u3 > u2 ⇒ ψ ≤ u2 < u3 ≤ ϕ,thus, w2 ∈ K2.
w3 =

{
u2 ≤ ϕ, if u2 < u3

u3 ≤ ϕ, if u2 ≥ u3,



Generalization of the Fuik-Kufner result 53thus, w3 ∈ K3.Theorem 1 indiates that w1 = max(u1, u2) = u1 and w3 = min(u2, u3) =
u3, so we an dedue the following relations

u1 ≥ u2 ≥ u3.One an observe that the proedure onneted with omparing the solutionsof variational inequalities is not ompliated and the result is stritly followingthe intuitive approah.The advantage of the method relies on omparing n di�erent problemssimultaneously instead of performing n− 1 repetitions of the similar tehniquesonneted with �nding the relations between di�erent pairs of solutions.Referenes[1℄ H.Brezis, Problems unilatreaux, J. Math. Pures Appl., 151 (1972), p. 1�168,[2℄ G.Duvant, J.Lions Inequalities in Mehanis and Physis, Springer-Verlag1975,[3℄ S.Fuik, A.Kufner, Nonlinear di�erential equations, Elsevier 1984,[4℄ S.Jagodzi«ski, A.Olek, K.Szzepaniak, Inner obstale problem: onvergeneof the solutions for impediments with varying domains, InternationalJournal of Pure and Applied Mathematis, 24 (2005), p. 265�270,[5℄ S.Jagodzi«ski, A.Olek, K.Szzepaniak, Lipshitz harater of solutions tothe inner obstale problems, Irish Math. So. Bulletin, 61 (2008), p. 15�27,[6℄ S.Jagodzi«ski, A.Olek, K.Szzepaniak, Regularity of the solutions to theinner obstale problems, identi�ation of the inner obstales with theDirihlet boundary problems, Int. Journal of Math. Analysis, 21 (2009),3, p. 1003�1010,[7℄ D.Kinderlehrer, G.Stampahia, An Introdutions to Variational Inequali-ties and their Appliations, Aademi Press, 1980,[8℄ U. Moso, Introdution to variational and quasivariational inequalities,Control theory and topis in fundamental analysis, Vienna 1976,[9℄ A. Olek, K. Szzepaniak, Continuous dependene on obstale in dou-ble global obstale problems, Annales Aademiæ Sientiarum FenniæMathematia, 28 (2003), p. 89�97,[10℄ G.Stampahia, Regularity of solutions of some variational inequalities,Pro. of Sym. Pure Math., 18 (1970), p. 550�560.





Bol. So. Esp. Mat. Apl.no51(2010), 55�63PLANAR BIMODAL PIECEWISE LINEAR SYSTEMS.BIFURCATION DIAGRAMSJ. FERRER, M. D. MAGRET, J. R. PACHA AND M. PEÑADept. de Matemàtia Apliada I, UPCAv. Diagonal, 647 08028, Barelona{josep.ferrer,m.dolors.magret,juan.ramon.paha,marta.penya}�up.eduAbstratThe set of planar bimodal linear ontrol systems is partitioned intoa �nite number of di�erentiable strata, eah of them onsisting ofthose systems having anonial forms (for the equivalene relation whihorresponds to admissible hanges of basis) di�ering only in the valuesof the ontinuous invariants. Bifuration diagrams with regard to thisstrati�ation are derived.Key words: Canonial form, strati�ation, bifuration diagram.AMS subjet lassi�ations: 93B10, 93B27, 93C101 IntrodutionPieewise linear systems have attrated the interest of researhers beause oftheir interesting dynamial properties and the wide range of appliations. Themost ommon pieewise linear systems found in pratie are in two or threedimensions. See for example [3℄, [4℄, [5℄.In this paper, we takle bifuration diagrams for planar bimodal pieewiseontrol systems. We onsider 2D ontrol linear systems ating on omple-mentary half-planes and the equivalene relation de�ned by basis hanges,preserving ontinuity along a given line (�admissible basis hanges�). Asthe set of equivalene lasses is not loally �nite, we onsider the union ofequivalene lasses di�ering only in the ontinuous invariants in the anonialform under this equivalene relation found in [6℄. There are a �nite number ofsets in this partition, eah of them is proved to be a di�erentiable manifold,therefore onstitutes a �nite strati�ation of the spae of systems. This is thestarting point to obtain bifuration diagrams, with regard to this lassi�ation.Moreover, anonial forms an be applied to study ontrollability and otherdynamial properties in eah stratum.In setion 2, we state the de�nitions of bimodal pieewise linear systems andadmissible basis hanges. In setion 3, we reall the anonial forms for ordertwo bimodal systems. In setion 4, we stratify the set of triples of matries55



56 J. Ferrer, M. D. Magret, J. R. Paha, M. Peñade�ning order two bimodal systems. Finally, in setion 5, we show a bifurationdiagram.Throughout the paper, R will denote the set of real numbers, Mn×m(R)the set of matries with m rows and n olumns (in the partiular ase where
m = n we will denote the set simply byMn(R)), Gln(R) the set of all invertiblematries in Mn(R) and by(e1, . . . , en) the natural basis of the Eulidian spae
R

n.2 Bimodal Pieewise Linear SystemsBimodal pieewise linear systems onsist of two linear dynamis ating oneah side of a given hyperplane. Most of elementary non-linear iruits foundin pratie may be modeled with two linear regions separated by parallelboundaries hyperplanes, with two or three state variables. See [3℄, [4℄, [7℄,[8℄, where di�erent topis about these systems are studied.Bimodal (pieewise) linear systems an be de�ned by two ontrol linearsystems:
{

ẋ(t) = A1x(t) +B1,

y(t) = Cx(t),
if y(t) ≤ 0,

{
ẋ(t) = A2x(t) +B2,

y(t) = Cx(t),
if y(t) ≥ 0where A1, A2 ∈ Mn(R); B1, B2 ∈ Mn×1(R); C ∈ M1×n(R), being thedynamis ontinuous along a separating hyperplane Cx = 0 for some matrix

C ∈ M1×n(R). For simpliity, we will onsider C = (1 0 . . . 0) ∈ M1×n(R) andthat the dynamis is ontinuous along the hyperplane H = {x ∈ R
n : Cx = 0},and hene: H = {x ∈ R

n : x1 = 0}.Then ontinuity along H is equivalent to:
B2 = B1, A2ei = A1ei, 2 ≤ i ≤ n.We will simply write B = B1 = B2. Thus any bimodal pieewise linearsystem an be de�ned by a triple of matries (A1, A2, B), where A1, A2 di�eronly in the �rst olumn.Notation Throughout the paper, X will denote the set of triples of matriesde�ning bimodal pieewise linear systems,

X = {(A1, A2, B) ∈Mn(R) ×Mn(R) ×Mn×1(R) | A2ei = A1ei, 2 ≤ i ≤ n}whih is obviously a di�erentiable manifold (of dimension n2 + 2n).As in [6℄, we onsider basis hanges preserving the hiperplanes x1(t) = k inorder to allow the results below to be also applied in the ases where a separatinghyperplane x1(t) = δ, δ 6= 0, are onsidered (see, for example, [3℄).De�nition 1 Basis hanges in the state variables spae preserving thehyperplanes x1(t) = k will be alled admissible basis hanges. Thus, they arebasis hanges given by a matrix S ∈ Gln(R),
S =

(
1 0
U T

)
, T ∈ Gln−1(R).



Bimodal Systems. Bifurations Diagrams 57Let us denote by S the Lie subgroup of Gln(R)

S :=

{
S ∈ Gln(R)

∣∣∣∣S =

(
1 0
U T

)
, T ∈ Gln−1(R)

}We onsider the equivalene relation in the set of matries X whih orrespondsto admissible basis hanges.De�nition 2 Two triples of matries (A1, A2, B), (A′
1, A

′
2, B

′) ∈ X are saidto be equivalent if there exists a matrix S ∈ S (representing an admissible basishange) suh that (A′
1, A

′
2, B

′) = (S−1A1S, S
−1A2S, S

−1B).This equivalene relation partitions X into �ner equivalene lasses than thesimilarity equivalene relation.3 Canonial forms for n = 2A anonial form is a representative in eah equivalene lass whih is easier todeal with, and therefore alulations beome simpler using it. In [3℄, anonialforms were obtained, assuming observability. In [6℄ anonial forms in the non-observable ase are obtained, in the ase where the observability matrix of thesystem rank equal to n − 1. In partiular, in the ase n = 2 these anonialforms and the matries S whih orrespond to admissible basis hanges arelisted below. We will use (CFN), N = 1, 2, . . . to label them.Let us onsider a triple of matries de�ning an order two bimodal system
((

a1 a3

a2 a4

)
,

(
γ1 a3

γ2 a4

)
,

(
b1
b2

))
.Let us assume that the system is observable (a3 6= 0). Then (see [3℄),the orresponding anonial forms Ac

1, A
c
2, B

c for the matries A1, A2 and Brespetively, are:
• Case 0: a3 6= 0,

Ac
1 =

(
a1 + a4 1

a2a3 − a1a4 0

)
=

( trA1 1
det A1 0

)
,

Ac
2 =

(
γ1 + a4 1

a3γ2 − a4γ1 0

)
=

( trA2 1
det A2 0

)
,

Bc =

(
b1

a3b2 − a4b1

)
;S =

(
1 0
a4

a3

1
a3

)
. (CF1)From now on, we will assume that the system is unobservable: a3 = 0. Wedistinguish several ases.

• Case 1: a3 = 0, a1 6= a4, γ1 6= a4.



58 J. Ferrer, M. D. Magret, J. R. Paha, M. Peña� If γ2 = a2
a4−γ1

a4−a1
, b2 +

a2b1
a4 − a1

= 0,
Ac

1 =

(
a1 0
0 a4

)
, Ac

2 =

(
γ1 0
0 a4

)
, Bc =

(
b1
0

)
;

S =

(
1 0

− a2

a4−a1
t

)
, for any t 6= 0. (CF2)� If γ2 = a2

a4−γ1

a4−a1
, b2 + a2b1

a4−a1
6= 0,

Ac
1 =

(
a1 0
0 a4

)
, Ac

2 =

(
γ1 0
0 a4

)
, Bc =

(
b1
1

)
;

S =

(
1 0

− a2

a4−a1
b2 + b1

a2

a4−a1

)
. (CF3)� If γ2 6= a2

a4−γ1

a4−a1
,

Ac
1 =

(
a1 0
0 a4

)
, Ac

2 =

(
γ1 0
1 a4

)
, Bc =




b1
b2+b1

a2

a4−a1

γ2−a2
a4−γ1
a4−a1


 ;

S =

(
1 0

− a2

a4−a1
γ2 − a2

a4−γ1

a4−a1

)
. (CF4)

• Case 2: a3 = 0, a1 = a4, γ1 6= a4.� If a2 = 0, b2 + γ2b1
a4−γ1

= 0,
Ac

1 =

(
a4 0
0 a4

)
, Ac

2 =

(
γ1 0
0 a4

)
, Bc =

(
b1
0

)
;

S =

(
1 0

− γ2

a4−γ1
t

) for any t 6= 0. (CF5)� If a2 = 0, b2 + γ2b1
a4−γ1

6= 0,
Ac

1 =

(
a4 0
0 a4

)
, Ac

2 =

(
γ1 0
0 a4

)
, Bc =

(
b1
1

)
;

S =

(
1 0

− γ2

a4−γ1
b2 + b1

γ2

a4−γ1

)
. (CF6)� If a2 6= 0,

Ac
1 =

(
a4 0
1 a4

)
, Ac

2 =

(
γ1 0
0 a4

)
, Bc =

(
b1

1
a2

[
b2 + b1

γ2

a4−γ1

]
)

;

S =

(
1 0

− γ2

a4−γ1
a2

)
. (CF7)
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• Case 3: a3 = 0, a1 6= a4, γ1 = a4.� If γ2 = 0, b2 = 0,

Ac
1 =

(
a1 0
0 a4

)
, Ac

2 =

(
a4 0
0 a4

)
, Bc =

(
b1
0

)
;

S =

(
1 0

− a2

a4−a1
t

)
, for any t 6= 0. (CF8)� If a2 = 0, b2 6= 0,

Ac
1 =

(
a1 0
0 a4

)
, Ac

2 =

(
a4 0
0 a4

)
, Bc =

(
b1
1

)
;

S =
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)

;
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• Case 4: a3 = 0, a1 = a4 = γ1.� If a2 = 0, γ2 = 0, b1 6= 0,
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;
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, for any u. (CF17)4 Strati�ationA �nite partition of the di�erentiable manifold X may be dedued from that inequivalene lasses: onsider the sets onsisting of all equivalene lasses withanonial forms of the �same type�, but with di�erent values for the parameters.The sets thus obtained are disjoint sets and, as we will show, di�erentiablemanifolds. Therefore, they onstitute a strati�ation of X .In order to use Arnold's tehniques (see [1℄), the starting point is thatequivalene lasses are the orbits of the Lie group ation of S on X de�nedby α(S, (A1, A2, B)) = (S−1A1S, S

−1A2S, S
−1B).Given (A1, A2, B) ∈ X , we will denote byO(A1, A2, B) its orbit and onsiderthe partition of X into sets, eah of them orresponding to the union of orbits orequivalene lasses having assoiated a anonial form of the same type; namely,

E1 is the set of all triples of matries having anonial form of type CF1, E2the set of all those having anonial form of type CF2, and so on. Note thatthese orbits are di�erentiable manifolds (see [9℄).Theorem 1 The sets Ei, i = 1, . . . , 17 are di�erentiable manifolds.



Bimodal Systems. Bifurations Diagrams 61Proof . Ei, i 6= 2, 5, 8 are open sets of linear varieties. E2, E5 and E8 arede�ned by quadrati equations, giving rise to impliit manifolds with no singularpoints. Thus they all are di�erentiable manifolds. �Corollary 2 X =

(
17⋃

i=1

Ei

) is a �nite strati�ation of X .Proof . Clearly, these sets are disjoint sets and onstitute a partition of X .From Theorem 1 they are di�erentiable manifolds, thus a strati�ation of X .
�Next Table shows the dimensions of the strata above.Stratum Dimension Stratum Dimension Stratum Dimension

E1 8 E2 5 E3 6
E4 7 E5 5 E6 5
E7 6 E8 5 E9 4
E10 6 E11 3 E12 1
E13 3 E14 4 E15 3
E16 5 E17 45 Bifuration diagramsA bifuration diagram of a family of bimodal systems,

Λ : R
d −→Mn(R) ×Mn(R) ×Mn×1(R)is a partition of the parameter spae R

d aording to the anonial form of thetriple of matries, and indued by the strati�ation whih was given in Setion 4.In partiular, this strati�ation provides the information about whih anonialforms are near eah other in the sense of loal perturbations.Let us show as an example about how a bifuration diagram may beobtained.Example 1 Consider the triple of matries ((2 0
1 3

)
,

(
1 0
−2 3

)
,

(
1
−1

)) andthe e�et of a perturbation on it:
((

2 ε1
1 + ε2 3 + ε3

)
,

(
1 ε1
−2 3 + ε3

)
,

(
1
−1

))
, for small ε1, ε2, ε3.If ε1 = ε2 = ε3 = 0, we obtain the initial triple, whih belongs to E2. If

ε1 = 0, ε3 6= 0, we obtain a triple in E4. If ε1 = ε3 = 0, ε2 6= 0, we obtain atriple in E3. Finally, in the ase where ε1 6= 0, we obtain a triple in E1.Referenes[1℄ V. I. Arnold, On matries depending on parameters. Uspekhi Mat. Nauk.,26 (1971).
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DIFFERENCE COMBINATION PARAMETRIC RESONANCE;APPLICATION TO THE GARDEN HOSE PROBLEM.JORGE GALÁN VIOQUE∗, A. R. CHAMPNEYS† AND M. TRUMAN†

∗Departmento de Matemátia Apliada IIInstituto de Matemátias de la Universidad de Sevilla (IMUS)
†Department of Engineering Mathematis. University of Bristol.jgv�us.esAbstratThis paper disusses ombination resonane phenomena in parametrisystems of two or more degrees of freedom starting from a theoretialresult by Mailybayev & Seyranian. We present, to the best of ourknowledge, the �rst example of di�erene ombination resonane in amehanial system. That is, where the system may exhibit signi�antresponse when fored with an external frequeny that is the di�erenebetween its two internal resonant frequenies. The model system studiedis a double pendulum with a follower load, a non-onservative fore thatwould be desribed for example by an osillating jet of �uid, like anidealized garden hose. For this example, after the inlussion of gravity, thedi�erene ombination frequeny may be lower than the two individualresonant frequenies, a surprising e�et that should be taken into aountwhen analyzing the stability of other high-dimensional systems.Key words: ombination resonane, follower pendulum, parametriallyexited dynamial systemsAMS subjet lassi�ations: 37B55, 70K281 IntrodutionDynamis systems subjet to a parametri exitation are suh that theforing terms appear as (usually periodi) time-varying oe�ients of the statevariables. The anonial example is the Mathieu equation, whih an be writtenin dimensionless form

ẍ+ (a+ b cos(t))x = 0 , (1)in whih the period of exitation is saled to 2π. Here the parameter b representsthe strength of the applied parametri foring (saled by the square of thefrequeny) and a is the square of the ratio of natural frequeny to foringfrequeny. The shape and properties of the instability tongues are well known,as are their properties if one adds a small amount of damping, see e.g. [3, 6, 1℄.63



64 J. Galán Vioque, A.R. Champneys, M. TrumanIn partiular, for small foring and damping harmoni instabilities (whihorrespond to pithfork bifurations of the trivial solution) our in thin tonguesthat originate from every value of a that is equal to the square of an integer; andsub-harmoni (period-doubling) instability tongues originate from point every
a = (2n− 1/2)2, n = 1, 2, . . ..For example, the Mathieu equation arises if one looks for instabilities ofthe trivial solution to a simple pendulum whose support is subjet to periodiaeleration equal to ∆cos(Ωt). The equations of motion of suh a system inthe presene of small linear damping an be written in the form

θ̈ + cθ̇ + [κ+ δ cos(Ωt)] sin(θ) = 0 , (2)where c is the damping oe�ient, κ = g/l, g is aeleration due to gravity, l isthe length of the pendulum and δ = ∆/l.This paper onerns a di�erent phenomenon for multi-degree-of-freedomsystems, namely that of ombination resonane, where an instability oursfor the trivial solution when the parametri exitation frequeny Ω is lose tothe sum or di�erene of two of the natural frequenies of the system ω1 ± ω2.There are many examples of suh ombination resonanes in the literature.For example, the book by Nayfeh [7℄ onsiders many suh ases, espeially ofmehanial systems where the two modes are derived from a Galerkin redutionof a ontinuum system suh as a plate or beam. In all these examples, though,it is a sum ombination resonane that is exited Ω ≈ ω1 + ω2. However,there do not seem to be any onrete examples of di�erene resonanes in theliterature. In fat, suh a mehanial devie might be somewhat strange. Ifwe had ω1 ≈ ω2, then Ω = ω1 − ω2 would be small, perhaps several orders ofmagnitude smaller. So a di�erene ombination resonane would give a responseat a high frequeny from low frequeny exitation. This would be like makinga drum vibrate by sending it up and down in an elevator!This paper presents an example of a system that has just suh a property.Based on some theoretial results by Mailybayev and Seyranian [4℄ (summarizedin the next setion) we show in Setion 3, that a di�erene ombinationresonane may our in theory in a simpli�ed model of a hose with time varying�ow, namely a double pendulum with a ombination of purely follower andonstant-diretional loads. Setion 4 then arries out a preliminary numerialparameter sweep to verify that this e�et is indeed seen in pratie. Finallysetion 5 draws onlusions and points to future work.2 A Parametri resonane theoremConsider a linear m-degree-of-freedom linear system (m ≥ 2) with periodioe�ients that an be written in matrix form as
Mÿ + γDẏ + (C + δB(Ωt))y = 0 . (3)Here M,D and C are symmetri, positive de�nite matries, B(τ) is a pieewise-ontinuous 2π-periodi matrix funtion of Ωt that ontains the parametri



Di�erene ombination parametri resonane 65exitation terms, y is an m-dimensional vetor of generalized oordinates and
γ and δ are small parameters.Let ωi and ωj be two normal modes frequenies (that is natural frequeniesof the problem when δ = γ = 0). Then we de�ne:Fundamental resonanes to our when Ω = 2ωj/k with j = 1, . . . ,mand k = 1, 2, . . . . If k is even then these are equivalent to the harmoni(pithfork) bifurations of the Mathieu equation. If k is odd these are thesub-harmoni (period-doubling) bifurations.Combination resonanes: Ω = (ωi ± ωj)/k with ωi > ωj and k = 1, 2, . . . .The sign `+' orresponds to sum ombination resonanes, and `−' todi�erene ombination resonanes.Theorem 1 ([4℄) If B(τ) is symmetri, then the system may be subjetedonly to fundamental and sum ombination resonanes.If B(τ) = φ(τ)B0 one obtains fundamental resonanes and, ombinationresonanes for Ω = ω1sign(cij)ω2, where

cij = uT
i B0uju

T
j B0ui ,where uj are the eigenvetors of the onservative system

Mÿ + Cy = 0To explain this result, it is su�ient to onsider (3) in the ase m = 2, γ = 0and whereB(t) is a onstant matrix times a sinusoidal funtion, B = B0 cos(Ωt).Suppose further that we hange oordinates so that the system with δ = 0 iswritten in diagonal form, and �nally that time has been resaled so that Ω = 1.Hene we obtain a system of the form
(
ẍ1

ẍ2

)
+

[(
α1 0
0 α2

)
+ δ

(
b11 b12
b21 b22

)
cos(t)

](
x1

x2

)
= 0, (4)where α1 = ω2

1/Ω
2, α2 = ω2

2/Ω
2 and the matrix B̂ = {bij} is the originalonstant matrix B0 written in the transformed oordinates. Realling how oneomputes stability urves for the Mathieu equation using Floquet theory, seee.g [3℄, we an look for solutions to (4) in the form

x1 =

∞∑

n=−∞
cne

int/
√

2, x2 = ±
∞∑

n=−∞
cne

inst/
√

2,where s = ±1 and cn are the Fourier oe�ients. We �nd an in�nite systemof algebrai equations. It is straightforward to see that in the ase δ = 0,there is a non-trivial solution with cn = 0 for all n 6= k and ck 6= 0, whenever
α1 + sα2 = k2. This would suggest that both sum and di�erene ombinationresonanes are possible. However, when looking at the onditions for the
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Figure 1: Shemati diagram of a planar double pendulum with sti� joints, anda (non-onservative) follower fore and a (onservative) parametri fore atingat the free end of the devie. Here α ∈ [0, 1] represents the relative ontributionof these two end-fores. The dimensionless equations of motion are given in (6).If g > 0 then gravity is assumed to be ating in the vertially upwards diretion.bifuration equations to have a real solution for nonzero δ, one �nds the followingondition
c12 = sign(b12b21) = s. (5)That is, to exite a sum resonane, the o�-diagonal entries of B0 must be ofthe same sign, and to exite a di�erene resonane these diagonal entries mustbe of opposite sign. In partiular, if B̂ is symmetri matrix (as is the asein many mehanial appliations) then only sum ombinations an be exited.In fat, it an be argued (see referenes in [4℄) that pure Hamiltonian systemsan never exite di�erene ombination resonane; in other words, if di�ereneparametri resonane is possible at all, then the matrix B(Ωt) must ontainnon-onservative terms.3 The follower pendulumCanonial examples of mehanial systems that ontain non-onservative foresare those that involve �uid-struture interation [5℄. The simplest form of suhsystems arise in models for hose pipes or strutures with attahed jets, wherethe �uid inside the mehanism is only modelled via a so-alled �follower fore�that is aligned with the end of the mehanism. A partiular simple example isthat of a pendulum with a follower fore, whih is represented in Fig. 1.Following [2℄ (see also [8℄) the equations of motion of suh a devie an be



Di�erene ombination parametri resonane 67written in dimensionless form as
(1 +m)θ̈1 + cos(θ1 − θ2)θ̈2 + 2cθ̇1 − cθ̇2 + 2θ1 − θ2 + θ̇22 sin(θ1 − θ2)

= p(Ωt)(1 − α) sin θ1 + α sin(θ1 − θ2) − g(1 +m) sin(θ1) (6)
cos(θ1 − θ2)θ̈1 + θ̈2 + c(θ̇1 − θ̇2) − θ1 + θ2 + θ̇21 sin(θ1 − θ2)

= p(Ωt)(1 − α) sin θ2 − g sin(θ2) .Here it is assumed that the two joints have equal sti�ness and damping,
m = m2/m1 represents the ratio between the moments of inertia of the twopendulums, c ≪ 1 is a dimensionless damping oe�ient and we assumethat the foring term p(Ωt) is assumed to be a 2π-periodi funtion of itsargument (spei�ally for the numerial omputations in the next setion wetake p(t) = δ cos(Ωt)). The original motivation for inluding the parameter αwas to introdue a homotopy that enables one to pass from a purely onservativesystem (if c = 0 also) when α = 0 to a non-onservative system when α = 1.The new ingredient here is to additionally inlude the e�ets of gravity via theterms proportional to g whih represents the ratio of gravitational to sti�nessfores.Taking the ase g = 0, after linearization about the trivial equilibriumposition θ1 = θ2 = 0, a straightforward alulation for (6) reveals that for
α = 0

c12 = −1

4
(1 +m)2 > 0,whereas for α = 1,

c12 = −1.Thus, sine c12 is a ontinuous funtion of α, we onlude that for su�ientlylarge follow fores, the system is indeed of the right form to exite di�ereneombination resonanes.A detailed two-timesale perturbation expansion was arried out in [9℄ for
g = 0, α = 1, in whih it was found that for small c and p the di�ereneombination resonane does indeed lead to nontrivial responses of the system for(6). Rather than reprodue this lengthy, but standard, analysis, we turn insteadto numerial results to illustrate the ourrene of the di�erene ombinationresonane.4 Numerial omputationsThe response of the systems has been omputed as the time averaged norm ofthe position and veloities after 200 time units staring from small amplituderandom initial onditions. The resonanes will be deteted as an inrease ofthis response funtion as we sweep in frequeny. To illustrate the validityand di�ulties of this detetion method we plot in Figure 2 the behavior ofthe response funtion for the Mathieu equation (2). We would expet somestruture for Ω ∼ 1 and Ω ∼ 2 (orresponding to rossing of the branhing
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Figure 2: (Left) Response of the Mathieu system as a funtion of the frequeny
Ω for δ = 0.5, c = 10−5 and a small amplitude random initial position. (Right)A zoom around the frequeny 1 displays a muh weaker resonane.point (BP) and period doubling (PD) urves in the typial Mathieu tonguesdiagram). A strong resonane struture around the period doubling frequenyis learly visible inidiating that the system is in the highly nonlinear region.The BP resonane is only visible after a zoom proess and is shown in the rightpanel of Figure 2.Performing a similar numerial omputation for the follower pendulumsystem (6), we obtain the response funtion shown in Figure 3 and 4 for theases of zero gravity (double pendulum in an horizontal table) and non vanishinggravity (hanging double pendulum).In agreement with the theoretial predition the sum ombination resonaneis present for the purely onservative ase (α = 0) whereas the di�ereneombination resonanes is only possible for the purely follower situation (α = 1).The transition from one ase to the other and the interation with the otherfundamental resonanes visible in the numerial experiments will be subjet offuture study.It is worth noting that the presene of a di�erene ombination resonane inthe latter ase (with gravity) ours for frequenies muh lower than any of theinternal frequenies of the system (normal modes). This unexpeted results mayhave relevant impliations while evaluating the stability of analogous struturesor, in the positive side, to take advantage of the inrease of response at or loseto the resonane in a "energy harvesting" devie.5 ConlusionThis paper has produed as far as we are aware the �rst physially realizableexample of a system that an exite di�erene ombination resonanes. The
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Figure 3: Response of the follower pendulum without gravity for α = 0 (left)and α = 1. The vertial lines are a guide for the eye to loate the position ofthe predited fundamental and ombination resonanes.reason why suh systems have previously not been observed appears to bebeause of the requirement (5) with s = −1, namely that the appropriateportion of the parametri foring matrix must have skew-symmetri terms. Inrotating systems it is well known that suh skew symmetri terms an arisein sti�ness and interia matries M and A due to Coriolis fores or gyrosopie�ets, and indeed an give rise to Hopf bifurations. However, it seems hardto imagine a mehanial system for whih the unfored system does not havethese rotational e�ets but the parametri exitation terms do. Instead, wehave found an example of mehanial systems with follower fores where wehave been able to show the required ondition (5) is satis�ed with s = −1.This paper presents just a preliminary study of the di�erene parametriresonane phenomenon. Future work will present detailed numerialontinuation results that map out in the parameter spae of (6) regions inwhih di�erene ombination resonane an arise, and in partiular to searhfor regions in whih ω1 ≈ ω2 so that the di�erene resonane an exist forfrequenies way below the two fundamental resonanes. We will also onsiderthe impliations for the nonlinear dynamis of the system.Referenes[1℄ A. R. Champneys, Dynamis of parametri exitation In Enylopediaof Complexity and Systems Siene, Ed. R. A. Meyers. Springer (2009)p. 2323-2345.
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Figure 4: Response funtion with gravity for α = 0 (left) and α = 1.[2℄ J. S. Jensen, Non-linear dynamis of the follower-loaded pendulum witadded support-exitation. J. of Sound and Vibration 215 (1998), p. 125�142.[3℄ D. W. Jordan and P. Smith, Nonlinear Ordinary Di�erential Equations.An introdution for Sientists and Engineers. Oxford University Press.Fourth Edition (2007).[4℄ A. A. Mailybayev and A. P. Seyranian, Parametri resonanes in systemswith small dissipation. J. Appl. Maths Mehs, 65 (2001), 5, p. 755�767.[5℄ M. P. Païdoussis and G. X. Li Pipes onveying �uid: a model dynamialproblem, J. Fluids Strutures 7 (1993) 137-204.[6℄ A. H. Nayfeh and D. T. Mook, Nonlinear Osillations. (1995) Wiley.[7℄ A. H. Nayfeh, Nonlinear Interations: Analytial, Computational andExperimental Methods, (2000) Wiley.[8℄ J. J. Thomsen, Chaoti dynamis of the partially follower-loaded elastidouble pendulum. Journal of Sound and Vibration 188 (1995) 3, p. 385�405.[9℄ M. Truman, MEMS Power Generators. M.S. Thesis in AdvanedDynamis Engineering, University of Bristol (2006).
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ON FRACTIONAL BROWNIAN MOTIONS AND RANDOMDYNAMICAL SYSTEMSMARÍA J. GARRIDO-ATIENZA∗ AND BJÖRN SCHMALFUÿ†
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†Institut für MathematikFakultät EIM, Universität Paderborn,Warburger Strasse 100, 33098, Paderborn, Germanymgarrido�us.es shmalfuss�uni-paderborn.deAbstratIn this paper we onsider a lass of nonlinear stohasti partialdi�erential equations (SPDEs) driven by a frational Brownian motionwith the Hurst parameter bigger than 1/2. We show that these SPDEsgenerate random dynamial systems.Key words: Frational Brownian motions, Random dynamial systems,Stohasti di�erential equations.AMS subjet lassi�ations: 60H15, 37H10, 60H05.1 IntrodutionA entral mathematial objet in Stohastis and Stohasti Proesses isthe Ito integral. It plays an important role in many areas of pure andapplied mathematis inluding mathematial �nane, population dynamis,�uid dynamis, statistis, signal proessing, ontrol, partile systems, to namea few. The integrator of suh an integral is often hosen to be the Brownianmotion (the Wiener proess) or its semimartingale generalizations. Theserandom funtions are of unbounded total variation, so that their Stieltjesintegrals do not exist. Speial properties of the integrators and the integrandsare neessary to generalize the de�nition of the Stieltjes integral to the Itointegral, and enable the de�nition of solutions of di�erential equations drivenby Brownian motion.A property of paramount importane to this e�et for Brownian motion isthe independene of its inrements. To move beyond integrals and proessesonstruted using this property is one of the most important tasks in thetheory of Stohastis. We are most interested in using the frational Brownianmotion (fBm) proess BH where H ∈ (0, 1) is �xed. It is a type of stohastiproess whih deviates signi�antly from Brownian motion and semimartingales.71



72 M.J. Garrido-Atienza, B. ShmalfuÿAs a entered Gaussian proess, it is haraterized by the stationarity of itsinrements and a medium- or long-memory property whih is in sharp ontrastwith martingales and Markov proesses. It also exhibits power saling and pathregularity properties with Holder parameter H , whih are very distint fromBrownian motion (note that the Brownian motion is inluded in this family ofmodels when onsidering H = 1/2). Frational Brownian motion has beomea popular hoie of late for appliations where lassial proesses annot modelthese non-trivial properties; for instane long memory, whih is also knownas persistene, and orresponds to the ase H ∈ (1/2, 1), is of fundamentalimportane for �nanial data and in internet tra�, see [12℄, [16℄ . FrationalBrownian motion is also a good andidate to model random long time in�uenesin limate systems, see [15℄.Ever sine the pioneering works of Zähle [17℄, Dereusefond and Üstünel[5℄, and Lyons [11℄, the main thrust has been to understand how to performstohasti integration with respet to fBm in a way whih is onsistent withsome properties of the lassial Ito theory for Brownian motion. In the ase ofhigher regularity (H > 1/2), simple trajetorial methods, labelled as pathwise,an be used whih make it easy to translate one integration theory into another,as frational derivatives allow a pathwise estimate of the integrals in terms ofintegrand and integrator using speial norms. Pathwise integrals historiallygave the �rst ases where adequate solutions to stohasti di�erential equations(SDEs) were established, e.g. Nualart and Rasanu [14℄; in�nite-dimensionalequations have been treated with the same suess as �nite-dimensional ones,e.g. Nualart and Maslowski [13℄, Garrido-Atienza et al. [6℄.In this paper, we aim to investigate the equations' asymptotis. There aretwo theories dealing with the asymptoti qualitative behavior for general SDEs:the theory of random dynamial systems (RDS) and the theory of existeneand uniqueness of invariant measures for the assoiated Markov semigroup.However, similarly to fBm itself, equations driven by fBm do not generate aMarkov proess; this preludes the study of invariant measures using lassialtools for fBm-driven systems. This motivates our plan to onentrate on thestudy of fBm-driven SDEs as RDS.The theory of RDS, developed by L. Arnold and oworkers, see [1℄, an beused to desribe the asymptotial and qualitative behavior of systems of randomand stohasti di�erential/di�erene equation in terms of stability, Lyapunovexponents, invariant manifolds, and attrators.As we have said, onsidering fBm instead of Brownian motion has someadvantages beause of the nie properties that the fBm enjoys and the Brownianmotion does not. Another ruial advantage is the following: for manyBrownian-driven SPDEs with non�trivial di�usion oe�ients, it is not known ifthese equations generate a RDS. The reason is that usually stohasti di�erentialequations are only de�ned almost surely where the exeptional set may dependon ω sine this exeptional set is related to the de�nition of an Ito integral whihis de�ned as a limit of random variables in probability. And suh a family ofexeptional sets does not allow to use the theory of RDS. But we an overomesuh exeptional sets dealing with SPDEs driven by a fBm with H > 1/2,



On Frational Brownian motions and random dynamial systems 73provided the stohasti integrals are interpreted in the pathwise sense.2 Preliminaries on random dynamial systemsIn this setion we review some basi onepts and results on random dynamialsystems that will be used later.In the next de�nition, we introdue a system that models the evolution of anoise.De�nition 1 A metri dynamial system (Ω,F ,P, {θt}t∈T) with two-sided time
T (whih is R in the ontinuous ase and Z in the disrete one) onsists of aprobability spae (Ω,F ,P) and a family of transformations {θt}t∈T suh that:1. It is a one-parameter group, i.e.

θ0 = idΩ, θt+s = θtθs, ∀t, s ∈ T,2. (t, ω) ∈ T × Ω → θtω is measurable,3. P is invariant with respet to θ, i.e., θtP = P, for all t ∈ T, whih meansthat P(θtA) = P(A), for all A ∈ F and all t ∈ T.4. P is ergodi with respet to θ, i.e, for any {θt}t∈T-invariant set B ∈ F , whihmeans that θtB = B for all t ∈ T, we have either P(B) = 0 or P(B) = 1.We now introdue a ouple of examples of metri dynamial systems. Let
V = (V, ‖ · ‖, (·, ·)) be a separable Hilbert spae.Consider �rst the Brownian motion. We hoose for Ω the set of ontinuousfuntions CV

0 = C0(R, V ) on R with values in V whih are zero at zero. On thisset we introdue the ompat open topology given by the uniform onvergeneon ompat intervals in R. The Borel�σ�algebra over this spae is denoted by
B(CV

0 ). P 1
2
is the Wiener measure. The existene of suh a anonial proess

(CV
0 ,B(CV

0 ),P 1
2
) follows by Kolmogorov's theorem about the existene of aontinuous modi�ation of a proess, see Bauer [2℄. The �ow θ is given by

θtω(·) = ω(· + t) − ω(t), ω ∈ Ω (1)whih is alled the Wiener shift. The Wiener shift is measurable, see Arnold[1℄ Page 544, beause CV
0 is separable and (t, ω) 7→ θtω is ontinuous. Weemphasize that this metri dynamial system is ergodi, see Boxler [3℄.Now let us introdue the frational Brownian motion. Given H ∈ (0, 1), aontinuous entered Gaussian proess βH(t), t ∈ R, with the ovariane funtion

EβH(t)βH(s) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ Ris alled a two�sided one-dimensional frational Brownian motion (fBm), and

H is the Hurst parameter.Assume that Q is a bounded and symmetri linear operator on V whih isof trae lass, i.e., there exist a omplete orthonormal basis {ei}i∈N in V and a



74 M.J. Garrido-Atienza, B. Shmalfuÿsequene of nonnegative numbers {λi}i∈N suh that trQ =
∑∞

i=1 λi < ∞ and
Qei = λiei, i ∈ N. A ontinuous V -valued frational Brownian motion BH withinremental ovariane operator Q and Hurst parameter H is de�ned by

BH(t) =
∞∑

i=1

√
λieiβ

H
i (t), t ∈ Rwhere {βH

i (t)}i∈N is a sequene of stohastially independent one-dimensionalfBm. Notie that the above series is onvergent in L2(Ω,F ,P) sine∑∞
i=1 λi <

∞ and E(βH
i (t))2 = |t|2H for t ∈ R.Remark 1 B1/2 is the Brownian motion.Using the de�nition of BH , Kolmogorov`s theorem ensures that BH has aontinuous version. Thus we an onsider the anonial interpretation of anfBm: let Ω = C0(R, V ), equipped again with the ompat open topology. Let

F be the assoiated Borel-σ-algebra and PH the distribution of the fBm BH ,and {θt}t∈R be the �ow of Wiener shifts de�ned by (1). Then the quadruple
(Ω, F ,P, θ) is a metri dynamial system whih is ergodi, see [9℄. Furthermore,
BH(·, ω) = ω(·), BH(·, θrω) = BH(·+ r, ω)−BH(r, ω) = ω(·+ r)−ω(r). (2)We now introdue the onept of random dynamial systems that is used todesribe the dynamis of systems under the in�uene of a noise.De�nition 2 A random dynamial system (RDS) with one-sided time T

+ andphase spae V is a pair onsisting of the metri dynamial system (Ω,F ,P, θ)and a mapping ϕ : T
+ × Ω × V → V whih is (B(T+) ⊗ F ⊗ B(V ),B(V ))�measurable and satis�es the oyle property

ϕ(t, θτω, ·) ◦ ϕ(τ, ω, ·) = ϕ(t+ τ, ω, ·), for t, τ ∈ T
+, ω ∈ Ω,

ϕ(0, ω, ·) = idV .A typial example of oyle mapping is the solution operator of �nite orin�nite dimensional di�erential equations with random oe�ients satisfyingpartiular regularity assumptions. Another example is the solution operatorof �nite dimensional Ito-equations. As we announed in the Introdution,for in�nite dimensional Ito-equations with non-trivial di�usion oe�ients thisproblem is rather unsolved.Notie that the oyle property is the generalization of the semigroupproperty; in fat, if we deleted all ω-dependene in the oyle property wewould just get the semigroup property.We want to stress that we have required the MDS to be de�ned on two-sided time T, while the RDS is only required to be de�ned on one-sided time
T

+. The reason is that we annot expet the mapping ϕ to be de�ned on T,sine it is given, for instane, by the solution operator of a SPDE, whih isnot invertible in general. However, we an onsider expressions of the following



On Frational Brownian motions and random dynamial systems 75type: ϕ(t, θ−tω, x), for x ∈ V , ω ∈ Ω, t ∈ T
+, expressions that play a ruialrole when analyzing the existene of random �xed points or random attratorsassoiated to the RDS ϕ, see [8℄.As we have mentioned, the purpose of this paper is to show that an in�nitedimensional stohasti di�erential equation driven by an fBm with generaldi�usion oe�ients generates a random dynamial system.3 Main resultsIn this setion we �rst introdue some basi onepts and results on frationalalulus and stohasti integrals with respet to the fBm βH and BH .For T > 0, let Wα,1(0, T ;V ) be the spae of measurable funtions f :

[0, T ] → V suh that
|f |α =

∫ T

0

(‖f(s)‖
sα

+

∫ s

0

‖f(s) − f(ζ)‖
(s− ζ)α+1

dζ

)
ds <∞,where 1−H < α < 1

2 is �xed, so we need to onsider from now on H ∈ (1/2, 1).Following Zähle [17℄, for f ∈Wα,1(0, T ;V ) we de�ne the stohasti integralas the generalized Stieltjes integral
∫ T

0

fdβH = (−1)α

∫ T

0

Dα
0+f(s)D1−α

T− βH
T−(s)ds, (3)

∫ t

s

fdβH =

∫ T

0

f1(s,t)dβ
H , for 0 ≤ s < t ≤ T,where, in general, for 0 ≤ a < b ≤ T , βH

b−(s) := βH(s)−βH(b), and for a < t < bthe Weyl derivatives are given by
Dα

a+f(t) =
1

Γ(1 − α)

(
f(t)

(t− a)α
+ α

∫ t

a

f(t) − f(ζ)

(t− ζ)α+1
dζ

)
,

D1−α
b− βH

b−(t) =
(−1)1−α

Γ(α)

(
βH(t) − βH(b)

(b− t)1−α
+ (1 − α)

∫ b

t

βH(t) − βH(ζ)

(ζ − t)2−α
dζ

)
,where Γ denotes the Gamma funtion. It an be proved (see, for instane,Nualart and R ³anu [14℄, Dereusefond and Üstünel [5℄, Zähle [17℄) that thestohasti integral (3) exists.Now we de�ne the stohasti integral with respet to the in�nite dimensionalfBm BH . Let L(V ) denote the spae of linear bounded operators on V and let

G : Ω × [0, T ] → L(V ) be an operator suh that G(ω, ·)ei ∈ Wα,1(0, T ;V ) foreah i ∈ N and ω ∈ Ω. We de�ne
∫ T

0

Gdω =

∞∑

i=1

∫ T

0

G(s)Q1/2eidβ
H
i (s) =

∞∑

i=1

√
λi

∫ T

0

G(s)eidβ
H
i (s), (4)where the onvergene of the sums in (4) is understood in V .



76 M.J. Garrido-Atienza, B. ShmalfuÿThe following result establish that when making a hange of variable in thestohasti integral, we not only have to shift the integration interval and thevariable but also the path of the fBm (for the proof, see [6℄).Lemma 1 For a, b, r ∈ R, assuming that both integrals are well-de�ned,
∫ b

a

G(s)dω(s) =

∫ b−r

a−r

G(s+ r)dθrω(s).Consider now the following stohasti evolution equation in V
{

du(t) = (Au(t) + F (u(t)))dt +G(u(t))dω(t),
u(0) = u0 ∈ V

(5)where ω denotes the in�nite dimensional fBm BH (see (2)).Assume that A is the in�nitesimal generator of an analyti semigroup S(·),and that F : V → V is Lipshitz ontinuous with Lipshitz onstant LF , and
G : V → L(V ) and G′ : V → L(V, L(V )) are Lipshitz ontinuous in thefollowing senses:

sup
i∈N

‖G(v1)ei −G(v2)ei‖ ≤ LG‖v1 − v2‖, (6)
sup
i∈N

‖G′(v1)ei −G′(v2)ei‖L(V ) ≤ L′
G‖v1 − v2‖, (7)where {ei}i∈N is the omplete orthonormal basis in V introdued in Setion 2.The solution of (5) on [0, T ] is a V -valued proess u whose paths are forevery ω ∈ Ω elements of Wα,1(0, T ;V ), for an α ∈ (1 −H, 1

2 ), and
u(t) = S(t)u0 +

∫ t

0

S(t−s)F (u(s))ds+

∫ t

0

S(t−s)G(u(s))dω, t ∈ [0, T ], (8)where the stohasti integral has to be understood aording to (4).For suh an α ∈ (1 −H, 1
2 ), denote by Wα,∞

ξ,σ (0, T ;V ) the Banah spae ofmeasurable funtions x : [0, T ] → V suh that
‖x‖α,ξ,σ = sup

t∈[0,T ]

e−σt

(
‖x(t)‖ + tξ

∫ t

0

‖x(t) − x(r)‖
(t− r)1+α

dr

)
<∞for σ ≥ 1, and ξ ∈ [α, 1 − α). The role of the fator tξ is ruial when provingthe following existene theorem, whih proof an be found in [6℄.Theorem 2 Let α ∈ (1 − H, 1

2 ), σ ≥ 1 and ξ ∈ [α, 1 − α). Assume F isLipshitz ontinuous, and that G and G′ satisfy (6) and (7). Then, for eahinitial point u0 ∈ V there exists a unique solution to equation (8) with its pathsin Wα,∞
ξ,σ (0, T ;V ). In addition, the mapping Φ : V → Wα,∞

ξ,σ (0, T ;V ) given by
Φ : u0 7→ u is ontinuous for ω ∈ Ω.



On Frational Brownian motions and random dynamial systems 77Theorem 3 The solution u of (8) de�nes a random dynamial system ϕ :
R

+ × Ω × V → V , given by
ϕ(t, ω, u0) = S(t)u0 +

∫ t

0

S(t− s)F (u(s))ds+

∫ t

0

S(t− s)G(u(s))dω.Proof . The measurability follows by [4℄ Lemma III.14.Trivially ϕ(0, ω, x) = u0. Let us hek then the oyle property: for
t, τ ∈ R

+, ω ∈ Ω and u0 ∈ V , we have
ϕ(t+ τ, ω, u0) = S(t+ τ)u0 +

∫ t+τ

0

S(t+ τ − s)F (u(s))ds

+

∫ t+τ

0

S(t+ τ − s)G(u(s))dω(s)

= S(t)

(
S(τ)u0 +

∫ τ

0

S(τ − s)F (u(s))ds +

∫ τ

0

S(τ − s)G(u(s))dω(s)

)

+

∫ t+τ

τ

S(t+ τ − s)F (u(s))ds +

∫ t+τ

τ

S(t+ τ − s)G(u(s))dω(s).Making the hange of variable s− τ = r, applying Lemma 1,
∫ t+τ

τ

S(t+ τ − s)G(u(s))dω(s) =

∫ t

0

S(t− r)G(u(r + τ))dθτω(r),and then, setting y(s) = u(s+ τ), for s ∈ [0, t],
ϕ(t+ τ, ω, u0) = S(t)y(0) +

∫ t

0

S(t− r)F (y(r))dr +

∫ t

0

S(t− r)G(y(r))dθτω(r)

= ϕ(t, θτω, ·) ◦ ϕ(τ, ω, u0).

�Proving that our stohasti equation (8) generates a RDS is the startingpoint to analyze its asymptoti behavior. One possibility, whih is a key oneptdesribing the dynamis of RDS generated by fBm-driven SDEs, is the so-alledglobal attrator, whih is an invariant ompat random set attrating otherbounded random sets. The essential dynamis take plae in a neighborhood ofthe attrator (see [8℄). Another option to disuss the stability of fBm-drivenSDEs is to study the existene of stable and unstable manifolds and Lyapunovexponents, see [10℄ and [7℄. Suh smooth manifolds are invariant under thedynamis of the systems, and on them, the states are attrated or repelled bya steady state.Referenes[1℄ L. Arnold, Random Dynamial Systems, Springer Monographs inMathematis, Springer-Verlag, Berlin 1998.
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†Department of MathematisNational Taiwan University, Taipei, TAIWANhk�s.miami.edu palmer�math.ntu.edu.twAbstratDetermination of stability or instability of a given orbit of a salarinterval map is investigated in terms of the sign of the Lyapunov exponentof the orbit. It is proved that an orbit of suh a C2 map with a negativeLyapunov exponent is stable. To prove instability, the lassial notionof Lyapunov exponent is strengthened by introduing a new quantityalled strong Lyapunov exponent. Then, it is proved that an orbit ofa C1 interval map with a positive strong Lyapunov exponent is unstable,or equivalently, exhibits sensitive dependene on initial onditions. Itis also shown that positive Lyapunov exponent su�es if an additionalassumption is made about the ritial points of the interval map.Key words: Interval maps, Lyapunov exponent, stability, strong Lyapunovexponent, sensitive dependene on initial onditions.AMS subjet lassi�ations: 37C75, 37D45, 37E05.1 IntrodutionLet us onsider a mapping f : [0, 1] → [0, 1] of the unit interval into itself and apositive orbit {xn}∞n=0 through an initial value x0 ∈ [0, 1], where xn+1 = f(xn).A question of paramount interest is the determination of stability or instabilityof a given suh orbit. For the sake of onreteness, we proeed with thede�nitions of these lassial notions.De�nition 1 (Lyapunov stability) Let f : [0, 1] → [0, 1] be a mapping of theinterval. The positive orbit {xn}∞n=0 through an initial value x0 ∈ [0, 1] is saidto be Lyapunov stable if for all ε > 0 there exists δ > 0 suh that if |y− x0| < δthen |fn(y) − fn(x0)| < ε for all n ≥ 0.In reent times, Lyapunov instability, equivalent to sensitive dependene oninitial onditions, has played a prominent role in �haoti� dynamis [1, 2, 5℄.79



80 H. Koçak, K. PalmerDe�nition 2 (Sensitive dependene) Let f : [0, 1] → [0, 1] be a mapping ofthe interval. The positive orbit {xn}∞n=0 through an initial value x0 ∈ [0, 1]exhibits sensitive dependene on initial onditions, if there exists ε > 0 suhthat given any δ > 0 there exists y with |y − x0| < δ and N > 0 suh that
|fN (y) − fN (x0)| ≥ ε.The most signi�ant salar quantity attahed to an orbit {xn}∞n=0, that doesnot inlude a ritial point of the map and for whih f ′(xn) exists for n ≥ 0, isits Lyapunov exponent.De�nition 3 (Lyapunov exponent) The Lyapunov exponent λ(x0) of a positiveorbit {xn}∞n=0 of an interval map f : [0, 1] → [0, 1] is de�ned as the number

λ(x0) = lim
n→∞

1

n+ 1

n∑

k=0

ln |f ′(xk)| ,if the limit exists.It is a popular pratie, espeially in experimental dynamis, to assoiate apositive Lyapunov exponent with instability and a negative Lyapunov exponentwith stability of an orbit. However, this pratie is without a �rm mathematialfoundation unless ertain restritions are imposed on a map. Indeed, reentlyDemir and Koçak [3℄ have onstruted a pieewise linear ontinuous map of theinterval with an orbit whih has a positive Lyapunov exponent but the orbitdoes not exhibit sensitive dependene on initial onditions. They also produedanother pieewise linear ontinuous map of the interval with an orbit whih hasa negative Lyapunov exponent but the orbit does exhibit sensitive dependeneon initial onditions. In this paper we announe three theorems regarding thedetermination of stability or instability of an orbit of a salar map from theLyapunov exponent of the orbit.2 Summary of ResultsThe �rst theorem establishes the stability of an orbit of a C2-salar interval mapwith a negative Lyapunov exponents. This simple di�erentiability assumptionproves su�ient to overome the di�ulty demonstrated by the example ofDemir and Koçak [3℄ referred to above.Theorem 1 Suppose f : [0, 1] 7→ [0, 1] is C2. If an orbit {xn}∞n=0 has negativeLyapunov exponent λ(x0) < 0, then the orbit is Lyapunov stable (in fat it isexponentially stable).The proof of this theorem is similar to the proof of the analogous theoremfor di�erential equations whih goes bak to Lyapunov. For the details, see [4℄.Dealing with the pathology exhibited by the seond example of Demir andKoçak [3℄ proved to be more hallenging. A simple di�erentiability assumptiondoes not, in general, appear to be su�ient for a positive Lypaunov exponentto imply sensitive dependene. To obtain a reasonably general result, we werefored to strengthen the notion of Lyapunov exponent.



Lyapunov exponents and stability 81De�nition 4 The strong Lyapunov exponent of an orbit {xn}∞n=0 is de�ned asthe number
Λ(x0) = lim

n→∞
1

n

i+n−1∑

k=i

ln |f ′(xk)|,if the limit exists uniformly with respet to i.Now, with this new notion of strong Lyapunov exponent, we an prove thefollowing result:Theorem 2 Suppose f : [0, 1] → [0, 1] is C1. If an orbit {xn}∞n=0 of f hasa positive strong Lyapunov exponent Λ(x0) > 0, then the orbit has sensitivedependene on initial onditions.The proof of this theorem follows from a more general statement where theassumption that the Lyapunov exponent is uniform is replaed by the weakerassumption that the orbit stays away from a ritial point. This strongertheorem is provided by showing that the assumption that a neighbouring orbitalways stays nearby leads to a ontradition. For the details, see [4℄.The preeding theorem ould not, in general, be applied to a haoti mapas suh maps usually have ritial points and most orbits would be dense andhene ome arbitrarily lose to ritial points and suh orbits annot have strongLyapunov exponents. In the theorem below we exhibit a lass of maps withritial points for whih a positive Lyapunov exponent does imply sensitivedependene even for orbits whih ome arbitrarily lose to ritial points. Thislass inludes the map f(x) = 4x(1 − x).Theorem 3 Let f : [0, 1] 7→ [0, 1] be a C2 map suh that f ′(c) = 0 for aunique c and suh that f ′′(c) 6= 0 and there exists m > 0 suh that fm(c) = qis �xed and |f ′(q)| > 1. Then if {xn}∞n=0 is a nononstant orbit of f with apositive Lyapunov exponent λ(x0) > 0, the orbit exhibits sensitive dependeneon initial onditions.The proof of this theorem is rather more deliate. Problems arise when theorbit goes near a ritial point. However then some time later it passes near anexpanding �xed point and this fores a nearby orbit to separate. The details ofthe proof are given in a forthoming paper [4℄.H.K. is supported in part by the National Siene Foundation grantsCMG0417425 and CMG0825547, and K.P. by NSC (Taiwan) 97-2115-M-002-011-MY2.Referenes[1℄ K. Alligood, T. Sauer, and J. Yorke, Chaos: An introdution to dynamialsystems. Springer-Verlag, New York, New York 1997.[2℄ J. Banks, V. Dragan, and A. Jones, Chaos: A Mathematial Introdution.Cambridge University Press 2003.
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∗Department of Mathematis, Bielefeld University,P.O. Box 100131, 33501 Bielefeld, Germanyrkruse�math.uni-bielefeld.deAbstratIt is shown how stohasti It�-Taylor shemes for stohasti ordinarydi�erential equations an be embedded into standard onepts ofonsisteny, stability and onvergene. An appropriate hoie of funtionspaes and norms, in partiular a stohasti generalization of Spijker'snorm (1968), leads to two-sided estimates for the strong error ofonvergene under the usual assumptions.Key words: SODE, stohasti di�erential equations, It�-Taylor shemes,disrete approximation, bistability, two-sided error estimates, stohasti Spijker normAMS subjet lassi�ations: 65C20, 65C30, 65J15, 65L20, 65L70.1 IntrodutionThe invention of It�-Taylor shemes was a major breakthrough in numerialanalysis of stohasti ordinary di�erential equations (SODEs). We refer to thepioneering book [7℄ and the in�uential monographs [9℄ and [10℄.In this paper we show how the strong onvergene theory of these shemesan be embedded into the standard framework of onsisteny, stability andonvergene as it is formulated in abstrat terms in the theory of disreteapproximations (see [14℄). Moreover, by a speial hoie of norms, namely astohasti version of the deterministi Spijker norm (see [12℄,[13℄,[6, Ch.III.8℄),we are able to derive two-sided estimates for the strong onvergene error.While our notion of onsisteny and (numerial) stability goes bak to thework of F. Stummel [14℄ there already exist other onepts in the literature.One an �nd notions of onsisteny and loal trunation errors in the books[7, 9, 10℄. We refer to [3℄ for a disussion. Other authors, who have onsideredthe question of stability, are for instane [2, 4℄.
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84 R. KruseTo be more preise, we deal with the numerial approximation of R
d-valuedstohasti proesses X , whih satisfy an ordinary It� stohasti di�erentialequation of the form

dX(t) = b0(t,X(t))dt+

m∑

k=1

bk(t,X(t))dW k(t), t ∈ [0, T ],

X(0) = X0.

(1)We assume that the initial value X0 has �nite seond moment. By W k,
k = 1, . . . ,m, we denote real and pairwise independent standard Brownianmotions and we also assume that the drift and di�usion oe�ient funtions
bk : [0, T ] × R

d → R
d ful�ll the usual global Lipshitz and linear growthonditions suh that (1) has a unique solution [1℄.Note that the orresponding integral form of the SODE (1) has therepresentation

X(t) = X0 +

∫ t

0

b0(s,X(s))ds+

m∑

k=1

∫ t

0

bk(s,X(s))dW k(s), t ∈ [0, T ]. (2)It�-Taylor shemes are based on an iterated appliation of It�'s formula onthe integrands of (2), provided that all appearing integrals and derivatives exist.Again, we refer to the books [7, 9, 10℄ for a rigorous derivation.Let M be the set of all multi-indies α = (j1, . . . , jl), l ∈ N, ji ∈ {0, . . . ,m},
i = 1, . . . , l. By ℓ(α) ∈ N and n(α) ∈ N we denote the length of α ∈ M andthe number of zeros in α ∈ M respetively. For γ ∈ {n

2 : n ∈ N} onsider the�nite set of multi-indies (.f. [7℄)
Aγ =

{
α ∈ M : 1 ≤ ℓ(α) + n(α) ≤ 2γ or ℓ(α) = n(α) = γ +

1

2

}
.For a time grid 0 = t0 < t1 < . . . < tN = T with (for simpliity) equidistantstep size h = T

N , N ∈ N, the It�-Taylor sheme of order γ is given by
Xh(t0) = X0,

Xh(tk) = Xh(tk−1) +
∑

α∈Aγ
fα(tk−1, Xh(tk−1))Iα,k, k ≥ 1,

(3)with the iterated (stohasti) integrals
Iα,k :=

∫ tk

tk−1

∫ s1

tk−1

· · ·
∫ sl−1

tk−1

dW j1(sl) . . . dW
jl(s1), (4)where α = (j1, . . . , jl) and dW 0(s) = ds. For the same α the oe�ient funtion

fα : [0, T ]× R
d → R

d is de�ned by
fα(t, x) = (Lj1 · · ·Ljjf)(t, x), (5)



Disrete approximation of SODEs 85where f : [0, T ] × R
d → R

d is the projetion with respet to the seondoordinate, i.e. f(t, x) = x, and the Lk are di�erential operators of the form
L0 =

∂

∂t
+

d∑

i=1

b0,i ∂

∂xi
+

1

2

d∑

i,j=1

m∑

k=1

bk,ibk,j ∂2

∂xi∂xj
,

Lk =
d∑

j=1

bk,j ∂

∂xj
, k = 1, . . . ,m.Example 1 If we hoose γ = 1

2 then the set A 1
2
just onsists of all multi-indies of length 1, i.e. A 1

2
= {(0), (1), . . . (m)}, and the oe�ient funtions

fα simplify to the drift and di�usion oe�ient funtions of the SODE (1), i.e.
f(k) = bk for k = 0, . . . ,m. Sine I(0),k = h and I(j),k = W j(tk)−W j(tk−1), theIt�-Taylor sheme of order γ = 1

2 is the well-known Euler-Maruyama sheme.One also easily heks that the hoie γ = 1 leads to the Milstein method.It is well-known (see for example [7, 9, 10℄) that the It�-Taylor sheme oforder γ onverges at least with order γ in the strong sense, i.e. there exists aonstant C > 0, independent of the step size h, suh that
max

0≤i≤N

(
E
(
|X(ti) −Xh(ti)|2

)) 1
2 ≤ Chγ , (6)where X is the analyti solution to (1) and Xh denotes the numerial solution.Note that [7, 9, 10℄ use an even stronger norm, where max ours inside theexpetation. It is an open problem whether our approah an handle this normas well.In order to embed the It�-Taylor sheme into the disrete approximationframework, we will write the equations (3) as Ah(Xh) = Rh with a suitableoperator Ah and right-hand side Rh. We use the norm

‖Yh‖0,h = max
0≤i≤N

‖Yh(ti)‖L2(Ω), (7)and the following generalization of Spijker's norm
‖Yh‖−1,h = max

0≤i≤N
‖∑i

j=0Yh(tj)‖L2(Ω). (8)Here ‖ · ‖L2(Ω) denotes the L2-norm of random variables.The key to our two-sided error estimate is the following bistability inequality
C1‖Ah(Yh) −Ah(Zh)‖−1,h ≤ ‖Yh − Zh‖0,h ≤ C2‖Ah(Yh) −Ah(Zh)‖−1,h. (9)In the following setion we show how the It�-Taylor sheme �ts into thedisrete approximation theory. In Setion 3 we give a preise formulation of ourmain result together with all assumptions.



86 R. Kruse2 Writing It�-Taylor shemes as disrete approximationsIn the disrete approximation theory the onepts of onsisteny, (numerial)stability and onvergene are de�ned in a very general way. Our notions ofbistability and of the loal trunation error are diretly related to the abstratframework invented by F. Stummel [14℄. We present the basi ideas behindStummel's theory in this setion. Simultaneously we embed the It�-Taylorsheme into the framework.The starting point of the disrete approximation theory is an equation ofthe form A(X) = Y . Here, the operator A : E → F is a mapping between twosets E and F . For a given Y ∈ F our aim is to �nd a disrete approximation ofthe solution X . To this end we assume the existene of two sequenes of metrispaes (Eh)h∈I and (Fh)h∈I and operatorsAh : Eh → Fh, h ∈ I, for some indexset I. With the help of two sequenes of restrition operators rE
h : E → Eh and

rF
h : F → Fh, for h ∈ I, the disrete spaes Eh and Fh are onneted to theoriginal spaes E and F respetively. Figure 1 visualizes the setting.PSfrag replaements

Y

A

Ah

E

Eh

F

Fh

X

Xh rE
h X rF

h YFigure 1: Visualisation of the disrete approximation theoryBy solving equations of the form Ah(Xh) = rF
h Y we obtain a sequene ofdisrete approximations (Xh)h∈I . Now, the theory of F. Stummel answers thequestions, in whih sense and under whih onditions the sequene (Xh)h∈Ionverges to the solution X . Let us �rst show how the SODE (1) and theIt�-Taylor sheme (3) an be embedded into �gure 1.Sine the existene of a unique solution X to (1) is guaranteed by ourassumptions we onsider the trivial operator

A :
E → F

X 7→ A(X)
(10)where E := {X} and F := {Y = (X0, 0)} are singletons (with the seondomponent of Y being the stohasti proess whih is P -a.s. equal to 0 ∈ R

d)and the operator A is given by
A(X) =

(
X(0),

(
X(t) −X(0) −

∫ t

0
b0(s,X(s))ds−∑m

k=1

∫ t

0
bk(s,X(s))dW k(s)

)

0≤t≤T

)
.



Disrete approximation of SODEs 87In order to de�ne the disrete metri spaes we denote the time grid by
τh := {ti = ih | i = 0, . . . , N}. As our underlying disrete spae we onsider theset Gh := G(τh, L

2(Ω,F , P ; Rd)) of all adapted and L2(Ω)-valued grid funtions,that is, for Zh ∈ Gh, the random variables Zh(ti) are square-integrable and
Fti

-measurable random variables for all ti ∈ τh. Here (Ft)t∈[0,T ] denotes the�ltration whih is generated by the Wiener proesses W k, k = 1, . . . ,m. Now,we hoose the metri spaes Eh and Fh to be the vetor spae Gh endowed withthe metri indued by the norm
‖Zh‖0,h = max

0≤i≤N
‖Zh(ti)‖L2(Ω) (11)and the stohasti version of Spijker's norm

‖Zh‖−1,h = max
0≤i≤N

‖∑i
j=0Zh(tj)‖L2(Ω), (12)respetively. Note that Eh and Fh are Banah spaes.Next, de�ne the two sequenes of restrition operators

rE
h :

E → Eh

X 7→ rE
h X, [rE

h X ](ti) = X(ti) for ti ∈ τh,
(13)

rF
h :

F → Fh

Y 7→ rF
h Y

[rF
h Y ](ti) =

{
X0 i = 0,
0 i = 1, . . .N.

(14)Finally, for h > 0, we introdue the operator
Ah :

Eh → Fh

Xh 7→ Ah(Xh)by the relationship
[Ah(Xh)](t0) = Xh(t0),

[Ah(Xh)](ti) = Xh(ti) −Xh(ti−1) −
∑

α∈Aγ
fα(ti−1, Xh(ti−1))Iα,i,

(15)for 1 ≤ i ≤ N . Under the assumption that all It�-Taylor oe�ient funtions fαsatisfy a linear growth ondition, [Ah(Xh)](ti) is an adapted and mean-squareintegrable random variable. Therefore, Ah maps Eh into Fh. See Setion 3 fora omplete statement of all assumptions.Sine the It�-Taylor shemes are expliit, the operators Ah are bijetive, i.e.there exists a unique solution X̃h to the equation Ah(X̃h) = Zh for all Zh ∈ Fh.In partiular, the It�-Taylor approximation Xh to (1) is equivalently written asthe solution to the equation Ah(Xh) = rF
h Y .Next, we introdue our notion of onsisteny, bistability and onvergene.



88 R. KruseDe�nition 1 Consider a one-step method given by a sequene of operators
(Ah)h. The method is alled onsistent of order γ > 0, if there exists a onstant
C > 0 and an upper step size bound h > 0, suh that the estimate

‖Ah(rE
h X) − rF

h A(X)‖−1,h ≤ Chγ (16)holds for all grids τh with h ≤ h, where X denotes the analyti solution of (1).The left hand side of (16) is alled loal trunation error or onsisteny error.Therefore, a one-step method is onsistent if the diagram in Figure 1 ommutesup to an error of order γ, that is rF
h ◦A ≈ Ah ◦ rE

h for h small enough.The seond ingredient in the onvergene theory is the onept of (numerial)stability. In [14℄ F. Stummel introdues the stronger notion of bistability andhe proves that bistability of a numerial method an be haraterized by theequiontinuity of the operators (Ah)h and (A−1
h )h. In this sense the followingde�nition is a su�ient ondition for Stummel's notion of bistability.De�nition 2 A one-step method de�ned by operators (Ah)h is alled bistable,if there exist onstants C1, C2 > 0 and an upper step size bound h > 0 suh thatthe operators Ah are bijetive and the estimate

C1‖Ah(Zh) −Ah(Z̃h)‖−1,h ≤ ‖Zh − Z̃h‖0,h ≤ C2‖Ah(Zh) −Ah(Z̃h)‖−1,hholds for all Zh, Z̃h ∈ Eh and for grids τh with h < h.Finally, we de�ne the error of onvergene in terms of the norm ‖ · ‖0,h, thespae Eh and the restrition operators rE
h .De�nition 3 A one-step method is alled onvergent of order γ > 0 if thereexist an upper step size bound h > 0 and a onstant C > 0 suh that theorresponding operators Ah are bijetive and

‖Xh − rE
h X‖0 ≤ Chγ (17)for all h ≤ h. Here Xh denotes the solution to Ah(Xh) = rF

h Y .3 Main resultIn this setion we give a preise formulation of the underlying assumptions andour main result.(A1) The initial value X0 is an F0-measurable and R
d-valued random variablesatisfying E(|X0|2) <∞.(A2) For all α ∈ Aγ there exists a onstant Lα > 0 suh that

|fα(t, x) − fα(t, y)| ≤ Lα|x− y| and |fα(t, x)| ≤ Lα(1 + |x|)for all x, y ∈ R
d and t ∈ [0, T ].



Disrete approximation of SODEs 89(A3) For a given order γ the It�-Taylor expansion of X(t) with respet to Aγexists for all t ∈ [0, T ].(A4) For all α ∈ B(Aγ) we have
∫ T

0

E
(
|fα(s,X(s))|2

)
ds <∞.The �rst two assumptions are used, for example, in [1℄ to assure the existeneand uniqueness of the solution X on [0, T ], suh that X(t) is mean-squareintegrable for all t ∈ [0, T ]. The assumption (A2) also assures that the operators

Ah are well-de�ned and bistable. In (A3) we assume that the It�-Taylorexpansion exists up to a given order γ. Assumption (A4) is needed in orderto prove the onsisteny of the It�-Taylor shemes. There we use the notationof the remainder set B(Aγ) of the It�-Taylor expansion whih is given by
B(Aγ) = {α = (j1, j2, . . . , jl) ∈ M : (j2, . . . , jl) ∈ Aγ} ⊂ M(.f. [7℄). Now we formulate our main result, whih is proven in [8℄.Theorem 1 Let the assumptions (A1)-(A4) hold for γ ∈ {n

2 |n ∈ N}. Thenthe It�-Taylor sheme of order γ is(i) onsistent of order γ,(ii) bistable with respet to the norms ‖ · ‖0,h and ‖ · ‖−1,h,(iii) onvergent of order γ.Moreover, there exists h > 0 suh that the two-sided error estimate
C1‖Ah(rE

h X) − rF
h Y ‖−1,h ≤ ‖rE

h X −Xh‖0,h ≤ C2‖Ah(rE
h X) − rF

h Y ‖−1,hholds for all grids τh with |h| ≤ h.Remark 1 Theorem 1 also holds for impliit methods like the stohasti thetamethod [3℄ and for stohasti multi-step methods [8℄.Remark 2 The two-sided error estimate in Theorem 1 an be used to disussthe optimal order of onvergene of the It�-Taylor methods. J. M. C. Clark andR. J. Cameron [5℄ onstruted the example
dX(t) =

(
1 0
0 X1(t)

)
d

(
W 1(t)
W 2(t)

)
, X(0) =

(
0
0

)
, (18)to show that, in general, the maximum order of onvergene is equal to 1

2 if thenumerial method, like the Euler-Maruyama sheme, uses only the inrements
W k(ti) −W k(ti−1) of the driving Wiener proesses. For this example the loaltruntion error of the Euler-Maruyama is exatly omputed to be√ 1

2Th. Hene,the strong error of onvergene is bounded from below by a term of order γ = 1
2 .A suitable generalization of this example gives orresponding results for thehigher order shemes [8℄.
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‡Departamento de Matemátia Apliada,Universidad Complutense de Madrid, 28040,Instituto de Cienias MatemátiasCSIC-UAM-UC3M-UCM, MADRIDlanga�us.es arober�mat.um.es suarez�us.esAbstratIn this paper we study in detail the pullbak and forwards attrationsto non-autonomous ompetition Lotka-Volterra system. In partiular,under some onditions on the parameters, we prove the existene of aunique non-degenerate global solution for these models, whih attratsany other omplete bounded trajetory. For that we present thesub-supertrajetory tool as a generalization of the now lassial sub-supersolution method.Key words: Sub-supertrajetory method, Lotka-Volterra ompetition system,attrating omplete trajetories.AMS subjet lassi�ations: 35B40, 35K55, 92D25, 37L05.1 IntrodutionIn this paper we ollet some results from [6℄ and [7℄ to analyze the asymptotidynamis of the following non-autonomous Lotka-Volterra ompetition model





ut − ∆u = u(λ(t, x) − a(t, x)u − b(t, x)v) x ∈ Ω, t > s
vt − ∆v = v(µ(t, x) − c(t, x)u− d(t, x)v) x ∈ Ω, t > s
u = v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs.

(1)
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92 J.A. Langa, A. Rodríguez-Bernal, A. SuárezHere, u and v represent the population densities of two speies within a habitat
Ω, a bounded and smooth domain in IRN , N ≥ 1, whih ompete in the habitat.
λ, µ are the growth rates of the speies, b, c are the interation rates between thespeies, a, d desribe the limiting e�ets of rowding in eah population. We areassuming that Ω is fully surrounded by inhospitable areas, sine the populationdensities are subjet to homogeneous Dirihlet boundary onditions. us, vs areregular and positive funtions whih implies that the solution of (1) satis�es
u, v ≥ 0.In this work we are interested in determining the asymptoti behaviour ofsolutions of the system (1). This is a very ompliated task, and only partialresults are known. For example in the autonomous ase (all the oe�ients in(1) are onstants) and denoting by Λ0 the prinipal eigenvalue assoiated to−∆,then if λ or µ ≤ Λ0, then one of the two speies (or both of them) will be drivento extintion. However, there exist two inreasing maps F,G : [Λ0,∞) 7→ IRsuh that if

λ > G(µ) and µ > F (λ),then (1) is permanent and moreover there exists a positive equilibrium solution(see Cantrell et al. [2℄ and López-Gómez [9℄).When non-autonomous terms are allowed in the equations, this is usuallydone under the assumption of periodiity, quasiperiodiity or almost periodiity,and in this ase similar results an be obtained to those for autonomousequations (see Hess [4℄, Hetzer and Shen [5℄ and referenes there in).Cantrell and Cosner [1℄ assume general non-autonomous terms that arebounded by periodi funtions, and using a omparison method give onditionson λ and µ that guarantee that (1) is permanent.In [6℄ we show that, under a smallness ondition on the oupling oe�ients
bc, if there exists a bounded and bounded away from zero omplete trajetoriesof (1), it is the unique suh trajetory, and it also desribes the unique pullbakand forwards attrating for (1), i.e. (u∗, v∗) is a bounded trajetory suh that,for any s ∈ IR and for any positive solution (u(t, s), v(t, s)) of (1) de�ned for
t > s, one has

(u(t, s) − u∗(t), v(t, s) − v∗(t)) → (0, 0) as t→ ∞, or s→ −∞. (2)In this work (see [7℄) we show that this trajetory really exists. To thisend we introdue the sub-supertrajetory method as a tool to get existene ofintermediate omplete trajetories assoiated to (1). Note that our onstrutionis independent of whether or not (1) has monotoniity properties. Note alsothat the usual way in previous works (for instane [6℄, [11℄) to get existeneof omplete trajetories assoiated to a partiular system is by means of thepullbak attrator. The sub-supertrajetory method adopts a di�erent and, inthis ase, more fruitful strategy. Moreover, we also get the existene of minimaland maximal global bounded trajetories assoiated to ordered systems.In Setion 2 we present the sub-supertrajetory tool, Setion 3 is devotedto the logisti equation whih appears when one speies is absent. Finally, inSetion 4 we show the results of system (1).



Non-autonomous Lotka-Volterra ompetition model 932 The sub-supertrajetory method for omplete solutionsConsider the general problem




ut − ∆u = f(t, x, u, v) x ∈ Ω, t > s
vt − ∆v = g(t, x, u, v) x ∈ Ω, t > s
u = v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs,

(3)where f, g are bounded on bounded sets of IR × Ω × IR2 and are loally Hölderontinuous in time. We denote the solutions of (3) as
u(t, s;us, vs), v(t, s;us, vs), for t > s.De�nition 1 A pair of funtions (u, v) ∈ C1,2

t,x (IR×Ω) is a omplete trajetoryof (3), if for all s < t in IR, (u(t), v(t)) is the solution of (3) with initial data
us = u(s), vs = v(s).De�nition 2 A positive funtion u(t, x) is non�degenerate at ∞ (respetively
−∞) if there exists t0 ∈ IR suh that u is de�ned in [t0,∞) (respetively
(−∞, t0]) and there exists a C1

0 (Ω) funtion ϕ0(x) > 0 in Ω, suh that forall x ∈ Ω, u(t, x) ≥ ϕ0(x) for all t ≥ t0 (respetively for all t ≤ t0).The use of sub-supertrajetory pairs to onstrut omplete solutions an befound in Chueshov [3℄ or Langa and Suárez [8℄. Both referenes use monotoniityproperties of the equations, see Corollaries 2 and 3 below. In partiular thisapplies to salar equations. Here we use similar ideas to onstrut boundedomplete trajetories, without suh monotoniity assumptions.Given T0 ≤ ∞ and two funtions w, z ∈ C((−∞, T0) × Ω) with w ≤ z wedenote
[w, z] := {u ∈ C((−∞, T0) × Ω) : w ≤ u ≤ z}.Now we introdue the onept of omplete sub-supertrajetory pair.De�nition 3 Let T0 ≤ ∞ and (u, v), (u, v) ∈ X = C1,2

t,x ((−∞, T0) × Ω). Wesay that (u, v) − (u, v) is a omplete sub-supertrajetory pair of (3) if1. u(t) ≤ u(t) and v(t) ≤ v(t) in Ω, for all t < T0.2. u ≤ 0 ≤ u and v ≤ 0 ≤ v on ∂Ω, for all t < T0.3. For all x ∈ Ω, t < T0

ut − ∆u− f(t, x, u, v) ≤ 0 ≤ ut − ∆u− f(t, x, u, v), ∀v ∈ [v, v],
vt − ∆v − g(t, x, u, v) ≤ 0 ≤ vt − ∆v − g(t, x, u, v), ∀u ∈ [u, u].Note that the onept of a sub-supersolution pair, de�ned for t > s, hasbeen widely used and developed, see e.g. Pao [10℄, to onstrut solutions forthe initial value problem (3). The main result of this setion is:



94 J.A. Langa, A. Rodríguez-Bernal, A. SuárezTheorem 1 Assume that there exists a omplete sub-supertrajetory pair of(3), (u, v) − (u, v), in the sense of De�nition 3. Moreover, assume u, v, u and
v are bounded at −∞. Then, there exists a omplete trajetory (u∗, v∗) ∈ X of(3) suh that

(u∗, v∗) ∈ I := [u, u] × [v, v].When f and g have some monotoniity properties, we an go further:Corollary 2 Under the assumptions of Theorem 1, assume moreover that f isinreasing in v and g in u. Then, there exist two omplete trajetories (u∗, v∗)and (u∗, v∗) of (3) with (u∗, v∗), (u∗, v∗) ∈ I := [u, u] × [v, v] suh that theyare minimal and maximal in I in the following sense: for any other ompletetrajetory (u, v) ∈ I we have:
u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),
v(t) ≤ v∗(t) ≤ v(t) ≤ v∗(t) ≤ v(t),

for all t < T0. (4)Corollary 3 Under the assumptions of Theorem 1, assume moreover that f isdereasing in v and g in u. Then, there exist two omplete trajetories (u∗, v∗)and (u∗, v∗) of (3) with (u∗, v∗), (u∗, v∗) ∈ I := [u, u] × [v, v] and suh thatthey are minimal-maximal and maximal-minimal in the following sense: forany other omplete trajetory (u, v) ∈ I we have:
u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),
v(t) ≤ v∗(t) ≤ v(t) ≤ v∗(t) ≤ v(t),

for all t < T0. (5)3 The non-autonomous logisti equationNote that (1) always admits semi-trivial trajetories of the form (u, 0) or (0, v).In this ase, when one speies is not present, the other one satis�es the logistiequation 



ut − ∆u = h(t, x)u − g(t, x)u2 in Ω, t > s
u = 0 on ∂Ω,
u(s) = us ≥ 0 in Ω. (6)It is well known that if

hM := sup
Q

h(t, x) <∞ and gL := inf
Q
g(t, x) > 0, (7)then, for every non-trivial us ∈ C(Ω), us ≥ 0, there exists a unique positivesolution of (6) denoted by Θ[h,g](t, s;us).On the other hand, for m ∈ L∞(Ω) we denote by Λ(m), the �rst eigenvalue of

−∆u = λu +m(x)u in Ω, u = 0 on ∂Ω.In partiular, we denote by Λ0 := Λ(0). It is well known that Λ(m) is asimple eigenvalue with a positive eigenfuntion, and a ontinuous and dereasingfuntion of m.



Non-autonomous Lotka-Volterra ompetition model 95Finally, for h, g ∈ L∞(Ω) with gL := inf{g(x), x ∈ Ω} > 0 onsider theellipti equation {
−∆u = h(x)u − g(x)u2 in Ω,
u = 0 on ∂Ω. (8)It is well known that (8) possesses a unique positive solution if, and only if,

Λ(h) < 0, whih we denote by ω[h,g](x).In the following result (see [12℄, [11℄ and [7℄ for a omplete study of (6)) weshow the existene and properties of a omplete nonnegative trajetory for (6).For this we will assume heneforth that h(t, x) and g(t, x) satisfy (7) and thereexist bounded funtions h±0 (x) and H±
0 (x) de�ned in Ω suh that

lim sup
t→±∞

sup
x∈Ω

(
h(t, x) −H±

0 (x)
)
≤ 0, 0 ≤ lim inf

t→±∞
inf
x∈Ω

(
h(t, x) − h±0 (x)

)
. (9)Proposition 4 Assume (7) and (9). Then:i) There exists a maximal bounded omplete trajetory, denoted by ϕ[h,g](t), of(6), in the sense that, for any other non-negative omplete bounded trajetory

ξ(t) of (6) we have
0 ≤ ξ(t) ≤ ϕ[h,g](t), t ∈ IR.Moreover, if ϕ[h,g](t, x) is nondegenerate at −∞ then it is the only one ofsuh solutions.ii) If Λ(H−

0 ) > 0, then ϕ[h,g](t) = 0 for all t ∈ IR. Therefore all non-negativesolutions of (6) onverge to 0, uniformly in Ω, in the pullbak sense.iii) If Λ(h−0 ) < 0 then ϕ[h,g] is the unique omplete bounded and non-degeneratetrajetory at −∞ of (6), and for t in ompat sets of IR, if s 7→ us ≥ 0 isbounded and non-degenerate, then
Θ[h,g](t, s;us) − ϕ[h,g](t) → 0 as s→ −∞ uniformly in Ω.iv) If Λ(H+

0 ) > 0, then for all us ∈ C(Ω), us ≥ 0, the positive solution of
(6) satis�es Θ[h,g](t, s;us) → 0 uniformly in Ω as t → ∞. In partiular,
ϕ[h,g](t) → 0 uniformly in Ω as t→ ∞.v) If Λ(h+

0 ) < 0 and ϕ[h,g] 6= 0, then ϕ[h,g] is non-degenerate at ∞ and for any
s and any non-trivial initial data us ≥ 0,

Θ[h,g](t, s;us) − ϕ[h,g](t) → 0 in C1(Ω) as t→ ∞.4 Appliations to the Lotka-Volterra ompetition modelWe assume from now on that λ, µ ∈ IR and
aL, dL, bL, cL > 0. (10)We will assume that there exist quantities a±I ≤ a±S , b±I ≤ b±S , c±I ≤ c±S and

d±I ≤ d±S suh that
0 < a±I ≤ a(t, x) ≤ a±S , 0 < b±I ≤ b(t, x) ≤ b±S ,
0 < c±I ≤ c(t, x) ≤ c±S , 0 < d±I ≤ d(t, x) ≤ d±S ,

(11)



96 J.A. Langa, A. Rodríguez-Bernal, A. Suárezfor all x ∈ Ω and for all t ≥ t0 or t ≤ t0. In the following result we show theexistene of a omplete trajetory of (1).Proposition 5 (Competitive ase) There exists a omplete trajetory
(u∗, v∗) of (1) with
ϕ[λ−bϕ[µ,d],a](t) ≤ u∗(t) ≤ ϕ[λ,a](t), ϕ[µ−cϕ[λ,a],d](t) ≤ v∗(t) ≤ ϕ[µ,d](t), t ∈ IR.Moreover, if (11) is satis�ed for very negative t and

λ > Λ(−b−Sω[µ,d−

I
]) and µ > Λ(−c−Sω[λ,a−

I
]), (12)then (u∗, v∗) is non-degenerate at −∞.If moreover (11) is satis�ed for large and very negative t, (12) and

λ > Λ(−b+Sω[µ,d+
I

]) and µ > Λ(−c+Sω[λ,a+
I

]) (13)holds, then (u∗, v∗) is non-degenerate at ∞.Proof . Note that in this ase f is dereasing in v and g in u. It is enoughto take
(u, u) = (ϕ[λ−bϕ[µ,d],a], ϕ[λ,a]) and (v, v) = (ϕ[µ−cϕ[λ,a],d], ϕ[µ,d]).Moreover, if λ and µ satisfy (12), resp. (13), then by Proposition 6 we obtainthat u and v are non-degenerate at −∞, resp. +∞. �Now, we an summarize the results for the system (1).Theorem 6 (Competitive ase)1. If λ < Λ0 and µ < Λ0

lim
s→−∞

(u(t, s;us, vs), v(t, s;us, vs)) = lim
t→∞

(u(t, s;us, vs), v(t, s;us, vs)) = (0, 0).2. If λ < Λ0 and µ > Λ0, then
lim

t→∞
u(t, s;us, vs) = 0,and for every nonnegative nontrivial ṽs we have

lim
t→∞

(
v(t, s;us, vs) − Θ[µ,d](t, s; ṽs)

)
= lim

t→∞

(
v(t, s;us, vs) − ϕ[µ,d](t)

)
= 0.3. If λ > Λ0 and µ < Λ0 , then

lim
t→∞

v(t, s;us, vs) = 0,and for every nonnegative nontrivial ṽs we have
lim

t→∞

(
u(t, s;us, vs) − Θ[λ,a](t, s; ṽs)

)
= lim

t→∞

(
u(t, s;us, vs) − ϕ[λ,a](t)

)
= 0.



Non-autonomous Lotka-Volterra ompetition model 974. If
λ > Λ(−b−Sω[µ,d−

I
]) and µ > Λ(−c−Sω[λ,a−

I
]), (14)there exists a omplete bounded non-degenerate at −∞ trajetory of (1)

(u∗(t), v∗(t)). Moreover, if b or c are small at −∞, that is,
lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ0for some suitable onstant ρ0 > 0, then this is the unique bounded non-degenerate at −∞ trajetory of (1) and it is pullbak attrating, that is
lim

s→−∞
(u(t, s;us, vs) − u∗(s), v(t, s;us, vs) − v∗(s)) = (0, 0).If moreover

λ > Λ(−b+Sω[µ,d+
I

]) and µ > Λ(−c+Sω[λ,a+
I

]), (15)then (u(t, s;us, vs), v(t, s;us, vs)) is non-degenerate at ∞. If additionally
b or c are small at ∞, that is,

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0for some suitable onstant ρ0 > 0, then all solutions of (1) have the sameasymptoti behavior as t→ ∞. If (14) is also satis�ed, then (u∗(t), v∗(t))is non-degenerate at ∞ and it is also forwards attrating, that is,
lim

t→∞
(u(t, s;us, vs) − u∗(t), v(t, s;us, vs) − v∗(t)) = (0, 0).Remark 1 Similar results an be presented for the prey-predator and symbiosisases.In Figure 1 we desribe the asymptoti dynamial regimes (pullbak -Casea)- and forwards -Case b)) when λ and µ are onstant funtions. Region A:extintion of both speies; Regions B and C: stability of semitrivial ompletetrajetories; Regions DP and DF : permanene regions (existene of global non-degenerate global solutions). The limiting urves are given in (14) and (15).Referenes[1℄ R. S. Cantrell and C. Cosner, Pratial persistene in eologial models viaomparison methods, Pro. Royal So. Edin., 126A (1996) 247-272.[2℄ R. S. Cantrell and C. Cosner, Spatial Eology via Reation-Di�usionEquations, John Wiley & Sons. Ltd. 2003.[3℄ I. Chueshov, Monotone random systems theory and appliations. LetureNotes in Mathematis, 1779. Springer-Verlag, Berlin, 2002.
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NONLOCAL STOCHASTIC DIFFERENTIAL EQUATIONS:EXISTENCE AND UNIQUENESS OF SOLUTIONSTHOMAS LORENZInstitute of Mathematis, Goethe University60325 FRANKFURT AM MAINlorenz�math.uni-frankfurt.deAbstratThe fous of interest is the existene of strong solutions to stohastifuntional di�erential equations whih are not restrited to pathwisedependenies. Indeed, the evolution of the wanted random proess maybe presribed by its urrent features being nonloal with respet tothe probability spae � like the expeted value and seond moments.This result is onluded from Cauhy-Lipshitz Theorem for mutationalequations (a form of generalized ODEs beyond vetor spaes) and a newaspet of weakening their a priori requirements.Key words: Mutational equations, di�erential equations beyond metri spaes,dynamial systems with feedbak, stohasti funtional di�erential equations.AMS subjet lassi�ations: 60H10, 34A12, 34G99, 54H20, 54E50.1 IntrodutionLet (Ω,A, (At)t≥0, P ) be a omplete probability spae with a �ltration (At)t≥0satisfying the usual onditions (i.e. it is right ontinuous and A0 ontains all

P null sets in A). W = (Wt)t≥0 is a Wiener proess on (Ω,A, (At)t≥0, P ). Set
EA :=

{
(t,X)

∣∣ t ≥ 0, X : Ω −→ R is At�measurable, E(|X |2) <∞
}
.

W 1,∞(R) denotes the Sobolev spae of bounded Lebesgue measurable funtions
R −→ R whose weak derivative is also represented by a funtion in L∞(R). Themain result about stohasti di�erential equations (SDEs) states:Theorem 1 Suppose f = (f1, f2) : EA −→W 1,∞(R)×W 1,∞(R) to satisfy

(i) sup(t,Y )∈EA

∥∥f(t, Y )
∥∥

W 1,∞(R)
< ∞ ,

(ii) for eah R > 0, there are LR ≥ 0 and a modulus of ontinuity ωR(·)suh that for all (ti, Yi)∈EA with |ti| + E(|Yi|2) ≤ R,
∥∥f(t1, Y1) − f(t2, Y2)

∥∥2

L∞(R)
≤ LR · E(|Y1 − Y2|2) + ωR(|t1 − t2|).Then for eah initial (0, X0) ∈ EA and T ∈ ]0,∞[, there exists a unique urve99
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[0, T ] −→ EA, t 7−→ (t,Xt) with (Xt)0≤t≤T being a strong solution of

dXt(ω) = f1
(
t,Xt) (Xt(ω)) dt + f2

(
t,Xt) (Xt(ω)) dWt(ω).This type of initial value problem di�ers from what is usually investigated as a�stohasti funtional di�erential equation� (as e.g. in [3, 7℄) beause its right-hand side an depend on nonloal features of Xt : Ω −→ R (instead of the morepopular pathwise dependene). Indeed, the example

dXt(ω) = g1
(
t, E(Xt), E(|Xt|2)

)
·
(
g2(t) + g3(Xt(ω))

)
dt +

+ h1

(
t, E(Xt), E(|Xt|2)

)
·
(
h2(t) + h3(Xt(ω))

)
dWt(ω)with bounded and Lipshitz funtions g1, h1 : R

3 −→ R, g2, g3, h2, h3 : R −→ Rful�ls these assumptions (with f1(t, Y ) := g1
(
t, E(Y ), E(|Y |2)

)
·
(
g2(t)+g3(·)

)).Theorem 1 an be easily extended to systems and �nds its appliations e.g.in dynami ooperative games (with laking or unertain information aboutothers). Moreover, it an be veri�ed for Lipshitz oe�ients of uniformly lineargrowth via ‖a1 − a2‖ := supR

a1−a2

1+|·| instead of ‖a1 − a2‖L∞(R) (as in [6, � 3.5℄).It results from the Cauhy-Lipshitz Theorem for mutational equations.Aubin introdued them for generalizing ordinary di�erential equations to metrispaes without linear struture [1, 2℄. By means of oneptual extensions evenbeyond metri spaes, the author investigated suh SDEs with additive noisein [6, � 3.5℄. A very brief survey of the general theory is given in � 2 below.Now a new analytial trik (presented here in � 3, Proposition 4) enables us toweaken the a priori requirements for mutational equations and thus, it makesthe restrition to additive noise redundant. In a word, the proof of Theorem 1onsists in the general Theorem 3 with Remark 2 below, the rather tehnialProposition 4 and the partiular preparations in Example 1.2 Mutational equations beyond metri spaes: A surveyThe main goal of mutational equations is to extend ordinary di�erentialequations beyond vetor spaes. As any linear struture is laking, we still relyon the notion of �rst-order approximation, but use now a lass of homotopies(instead of a�ne-linear maps) for omparing. The �rst essential questions fouson the distane funtions and the additional properties of the homotopies whihare to guarantee that Euler method provides solutions to initial value problems.In [6, Ch. 3℄, mutational equations are presented beyond (pseudo-) metrispaes for the �rst time. The distane funtions d, e are assumed to satisfy someonditions of ontinuity instead of the triangle inequality. Here we summarizesome of the main results for a speial ase of distane funtions and, all theproofs are given in [6, �� 3.1 � 3.4℄.General assumptions and notations for � 2.(H1) E 6= ∅ is a set and, d, e : E × E −→ [0,∞[ are re�exive and symmetri.
⌊·⌋ : E −→ [0,∞[ is sequentially lower semiontinuous w.r.t. d.



Nonloal stohasti di�erential equations 101(H2) There exist a metri m0 : E ×E −→ [0,∞[ on E and positive onstants
C1, C2, C3, C4, p, q with C1 ·mp

0 ≤ d ≤ C2 ·mp
0, C3 ·mq

0 ≤ e ≤ C4 ·mq
0suh that d is ontinuous and e lower semiontinuous w.r.t. m0.(H3) A set Θ

(
E, d, e, ⌊·⌋) 6= ∅ of so-alled transitions [0, 1] × E −→ E onthe tuple (E, d, e, ⌊·⌋) is given, i.e. by de�nition, eah ϑ ∈ Θ

(
E, d, e, ⌊·⌋)satis�es

1.) for every x ∈ E : ϑ(0, x) = x

2.) ∃ nondereasing α(ϑ; ·) : [0,∞[ −→ [0,∞[ : for any x, y ∈ E
(
⌊x⌋, ⌊y⌋≤r

)
,

lim sup
h ↓ 0

d(ϑ(h,x), ϑ(h,y)) − d(x,y)
h ≤ α(ϑ; r) · d(x, y)

3.) ∃ nondereasing β(ϑ; ·) : [0,∞[ −→ [0,∞[ : for any s, t∈ [0, 1], x
(
⌊x⌋≤r

)
,

e
(
ϑ(s, x), ϑ(t, x)) ≤ β(ϑ; r) · |t− s|

4.) ∃ γ(ϑ) ∈ [0,∞[ : ⌊ϑ(t, x)⌋ ≤
(
⌊x⌋ + γ(ϑ) t

)
· eγ(ϑ) t for any t, x,(H4) D : Θ

(
E, d, e, ⌊·⌋)×Θ

(
E, d, e, ⌊·⌋)× [0,∞[−→ [0,∞[ ful�ls for eah r ≥ 01.) D( · , · ; r) is re�exive and symmetri,2.) D( · , · ; r) is sequentially ontinuous w.r.t. {D(·, · ; R) |R ≥ 0},3.) D(ϑ, τ ; · ) is nondereasing for any ϑ, τ ,4.) lim sup

h ↓ 0

d
(
ϑ(t1+h,x), τ(t2+h,y)

)
− d(ϑ(t1,x), τ(t2,y)) · eα(τ;R)·h

h ≤

D(ϑ, τ ;R)for any ϑ, τ ∈ Θ
(
E, d, e, ⌊·⌋

)
, x, y ∈ E, t1, t2 ∈ [0, 1[ with

⌊x⌋, ⌊y⌋ ≤ r and R :=
(
r + max{γ(ϑ), γ(τ)}

)
· emax{γ(ϑ),γ(τ)}.Both the parameter α and the �distane� D between transitions are based onloal information (w.r.t. time tending to 0), but they lay the basis for estimatingthe distane between two points evolving along two transitions � via Gronwall.Proposition 2 ([6, Proposition 3.7℄) Let ϑ, τ ∈ Θ

(
E, d, e, ⌊·⌋

)
, r ≥ 0 and

t1, t2 ∈ [0, 1[ be arbitrary. For any x, y ∈ E suppose ⌊x⌋ ≤ r, ⌊y⌋ ≤ r and set
R :=

(
r + max{γ(ϑ), γ(τ)}

)
· emax{γ(ϑ), γ(τ)} <∞.Then the following estimate holds for eah h ∈ [0, 1[ with max{t1+h, t2+h} ≤ 1

d
(
ϑ(t1+h, x), τ(t2+h, y)

)
≤
(
d
(
ϑ(t1, x), τ(t2, y)

)
+ h ·D(ϑ, τ ;R)

)
eα(τ ;R) h.The so-alled mutation of a urve x(·) : [0, T ] −→ E is the ounterpart of thetime derivative and, its de�nition re�ets the notion of �rst-order approximation(for h ↓ 0) in onnetion with the preeding strutural inequality.De�nition 1 Consider a urve x(·) : [0, T ] −→ E with sup ⌊x(·)⌋ <∞. Theso-alled mutation of x(·) at time t ∈ [0, T [ is de�ned as

◦
x(t) :=

{
ϑ ∈ Θ

(
E, d, e, ⌊·⌋

) ∣∣∣ for eah R ≥ sup ⌊x(·)⌋, there is αR > 0 s.t.for all τ ∈ Θ
(
E, d, e, ⌊·⌋

)
, y ∈ E, s ∈ [0, 1[ with ⌊τ(·, y)⌋ ≤ R :

lim sup
h ↓ 0

d(x(t + h), τ(s + h, y)) − d(x(t), τ(s,y)) · eαR·h

h ≤ D
(
ϑ, τ ; R

)}
.



102 T. LorenzRemark 1 If the set E has a separate real omponent indiating the respetivetime (as in Example 1 about SDEs below), then we an restrit all quantitativeomparisons to �simultaneous� states τ(s, y), x(t) ∈ E. The resulting set ofapproximating transitions does not have to be idential to the mutation in Def. 1,but the relevant onlusions (in proofs of existene et.) do not hange [6, � 3.4℄.De�nition 2 Let a funtion f : E × [0, T ] −→ Θ
(
E, d, e, ⌊·⌋

) be given.A urve x(·) : [0, T ] −→ E is alled a solution to the mutational equation
◦
x(·) ∋ f

(
x(·), ·

) in (E, d, e, ⌊·⌋, D) if it satis�es:
1.) x(·) is ontinuous with respet to e and bounded with respet to ⌊·⌋,
2.) for Lebesgue-almost every t ∈ [0, T [: f(x(t), t) ∈ ◦

x(t),These terms do not use any linear struture expliitly and, they enable us toformulate the initial value problem for mutational equations. In partiular,Peano's Theorem about existene of solutions (due to ontinuity and suitableompatness) has an analogue [6, � 3.3.3℄. In regard to the SDEs, we present theounterpart of Cauhy-Lipshitz Theorem [6, Theorem 3.31℄ and the onlusionabout uniqueness in [6, Proposition 3.11℄.De�nition 3 ([6, De�nition 3.16℄) For any initial element x0 ∈ E, time T ∈
]0,∞[ and bounds α̂, β̂, γ̂ > 0, let N = N (x0, T, α̂, β̂, γ̂) denote the (possiblyempty) subset of all �Euler urves� y(·) : [0, T ] −→ E onstruted in thefollowing pieewise way: Choosing any equidistant partition 0 = t0 < t1 <
. . . < tn = T of [0, T ] (with n > T ) and ϑ1 . . . ϑn ∈ Θ(E, d, e, ⌊·⌋) with





supk γ
(
ϑk) ≤ γ̂

supk α
(
ϑk; (⌊x0⌋ + γ̂ T ) ebγ T

)
≤ α̂,

supk β
(
ϑk; (⌊x0⌋ + γ̂ T ) ebγ T

)
≤ β̂,de�ne y(·) : [0, T ] −→ E as y(0) := x0 and

y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1, 2, . . . , n.It is related to pieewise onstant ϑ(·) : [0, T ] −→ Θ(E, d, e, ⌊·⌋) de�ned as
ϑ(t) := ϑj for t ∈ [tj−1, tj [ (j = 1 . . . n).The tuple (E, d, e, ⌊·⌋,Θ) is alled Euler equi-ontinuous if for any x0 ∈ E,

T ∈ ]0,∞[, α̂, β̂, γ̂ > 0, there exists a onstant L ∈ [0,∞[ suh that every urve
y(·) ∈ N (x0, T, α̂, β̂, γ̂) is L-Lipshitz ontinuous with respet to e.Theorem 3 (Extended Cauhy-Lipshitz Theorem, [6, � 3.3.7℄) Supposethe metri spae (E,m0) to be omplete and the tuple (E, d, e, ⌊·⌋, Θ

(
E, d, e, ⌊·⌋

))to be Euler equi-ontinuous. For f : E × [0, T ] −→ Θ
(
E, d, e, ⌊·⌋

) assume
(1.) For eah R > 0,

α̂(R) := supx, t α(f(x, t); R) < ∞,

β̂(R) := supx, t β(f(x, t); R) < ∞,
γ̂ := supx, t γ(f(x, t)) < ∞,
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(2.) f is Lipshitz ontinuous w.r.t. state in the following sense: for eah r≥0,there exist onstants Λ, µ > 0 and a modulus of ontinuity ω(·) suh that

δ : E × E −→ [0,∞[, (x, y) 7−→ inf
{
d(x, z) + µ · e(z, y)

∣∣ z∈E, ⌊z⌋ ≤ r
}satis�es D

(
f(x, s), f(y, t); r

)
≤ Λ · δ(x, y) + ω(|t− s|)whenever (x, s), (y, t) ∈ E × [0, T ] ful�l max

{
⌊x⌋, ⌊y⌋

}
≤ r.Then for every initial element x0 ∈ E, there exists a solution x(·) : [0, T ] −→ Eto the mutational equation ◦

x(·) ∋ f
(
x(·), ·

) with x(0) = x0.Any other solution y(·) to this initial value problem satis�es δ
(
x(·), y(·)

)
≡ 0.Remark 2 In the speial ase of square-integrable random variables on R, weprefer the square deviation for d = e to the L2 norm (see details in Example 1below). Then it is su�ient to make the Lipshitz assumption w.r.t. E(| · − · |2)instead of the auxiliary distane δ beause for all square-integrable X,Y, Z,

E(|X − Z|2) + E(|Z − Y |2) ≥ 1
2 E(|X − Y |2).3 The new aspet of weakening a priori assumptionsThe de�nition of transition in (H3) implies the restrition that the initial dis-tane between two points may grow (at most) exponentially while evolving alongthe same transition ϑ, i.e. for any x, y ∈ E and h ∈ [0, 1],

d (ϑ(h, x), ϑ(h, y)) ≤ d(x, y) · eα hwith a onstant α ∈ [0,∞[ depending on ϑ and max{⌊x⌋, ⌊y⌋} < ∞. The keygoal of this setion is some way out if the andidates for transitions only satisfy
d (ϑ(h, x), ϑ(h, y)) ≤ C · d(x, y) · eα hwith a onstant C > 1. In a very broad sense, we apply the same notion asfor the step from Hille-Yosida Theorem (about ontrative C0 semigroups) tothe Theorem of Feller, Miyadera and Phillips (about arbitrary C0 semigroups)(see e.g. [4, Theorem II.3.8℄). Indeed, we introdue a suitable auxiliary distane

d̂ being �equivalent� to d, but beyond vetor spaes now, there is no linear re-solvent operator available as in the standard proof of the Theorem of Feller et al.General assumptions and notations for � 3.(A1) Θ̌(E, d, e, ⌊·⌋) is a nonempty set of funtions ϑ : [0, 1]×E −→ E satisfying
(1.) for every x ∈ E : ϑ(0, x) = x

(3.) there is β(ϑ; ·) : [0,∞[−→ [0,∞[ suh that for any s, t∈ [0, 1], x∈Ewith ⌊x⌋ ≤ r : e
(
ϑ(s, x), ϑ(t, x)) ≤ β(ϑ; r) · |t− s|

(4.) there is γ̂ ∈ [0,∞[ (not depending on ϑ) suh that for any t ∈ [0, 1]and x ∈ E : ⌊ϑ(t, x)⌋ ≤
(
⌊x⌋ + γ̂ t

)
· ebγ tMoreover, a parameter funtion α : Θ̌(E, d, e, ⌊·⌋) × [0,∞[ −→ [0,∞[is nondereasing w.r.t. its seond argument. (Its purpose is lari�ed in(A4) below.)



104 T. Lorenz(A2) For any initial element x0 ∈ E, time T ∈]0,∞[ and bounds α̂, β̂ > 0,
N = N (x0, T, α̂, β̂, γ̂) onsists of all �Euler urves� related to funtionsin Θ̌(E, d, e, ⌊·⌋) as in De�nition 3 (but with the global bound γ̂ insteadof γ(ϑk)).(A3) D : Θ̌(E, d, e, ⌊·⌋)× Θ̌(E, d, e, ⌊·⌋)× [0,∞[ −→ [0,∞[ satis�es (H4) (1)�(3).(A4) There is a nondereasing funtion Č : [0,∞[ −→ ]0,∞[ satisfying:Choose the bounds α̂, β̂, R, T > 0 and initial points x0, y0 ∈ E arbitrarilywith max{⌊x0⌋, ⌊y0⌋} < R and set ρ(t) := (R + γ̂ t) ebγ t. Thenany urves x(·) ∈ N (x0, T, α̂, β̂, γ̂), y(·) ∈ N (y0, T, α̂, β̂, γ̂) and therelated pieewise onstant funtions ϑ, τ : [0, T ] −→ Θ̌(E, d, e, ⌊·⌋) (as inDe�nition 3) ful�l
d
(
x(T ), y(T )

)
≤
(
Č(0) · d(x0, y0) +

Č(T ) ·
∫ T

0

D (ϑ(s), τ(s); ρ(s)) · e−α̌ρ(s) ds
)

· eα̌ρ(T )with the abbreviation α̌ρ(t) :=

∫ t

0

α(τ(s); ρ(s)) ds.In omparison with the summary in � 2, the essential new aspet is spei�ed inassumption (A4). Indeed, the details about α(ϑ; ·) andD(·, ·; r) are now reduedand, we assume the strutural inequality (of Prop. 2) with three modi�ations:(i) the initial error is now multiplied by a onstant Č(0) (possibly > 1),(ii) we suppose this modi�ed inequality for all �Euler urves� related topieewise onstant urves in Θ̌(E, d, e, ⌊·⌋) in a �nite time interval [0, T ],(iii) there is an additional fator e−α̌ρ(s) in the integral � for tehnial reasons,but this is no severe restrition beause we an usually adapt Č(T ).As T > 0 is arbitrary, restritions imply immediately that the estimate in (A4)holds at even every point of time in [0, T ].Example 1 Let (Ω,A, P ) be a probability spae. W = (Wt)t≥0 is a Wienerproess and, (At)t≥0 denotes an inreasing family of sub�σ�algebras of A suhthat for all 0 ≤ s ≤ t, Wt is At-measurable with E(Wt − Ws | As) = 0,
E(Wt | A0) = 0 almost surely.Consider the stohasti di�erential equation dXt = a(Xt) dt + b(Xt) dWtwith Λ-Lipshitz ontinuous oe�ients a, b : R −→ R. Then for every initial
A0�measurable X0 : Ω −→ R with E

(
|X0|2

)
<∞, there exists a pathwise uniquestrong solution (Xt)0≤ t≤T on [0, T ] with sup0≤ t≤ T E

(
|Xt|2

)
< ∞.Moreover, at every time t ∈ [0, T ], it ful�ls following estimates with onstants

C1, C2, C3 depending only on |a(0)|, |b(0)|,Λ
E
(
|Xt|2

)
≤

(
E
(
|X0|2

)
+ C2 t

)
eC1 t

E
(
|Xt −X0|2

)
≤ C3 (1 + T )

(
E
(
|X0|2

)
+ 1
)

eC1 t · t .[5, Theorems 4.5.3, 4.5.4℄. This observation lays the foundations for hoosing



Nonloal stohasti di�erential equations 105these strong solutions (parametrized by the two Λ-Lipshitz oe�ients a, b) asandidates for transitions. The aspet of suitable At-measurability motivates usto take time t as additional real omponent into onsideration (as in [6, � 3.5.3℄):
EA :=

{
(t,X)

∣∣ t ≥ 0, X : Ω −→ R is At�measurable, E(|X |2) <∞
}
,

d, e : EA × EA −→ [0,∞[,
(
(s,X), (t, Y )

)
7−→ |t− s| + E

(
|X − Y |2

)

⌊·⌋ : EA −→ [0,∞[, (t,X) 7−→ |t| + E
(
|X |2

)
,

ϑa,b : [0, 1]× EA −→ EA,
(
h, (t0, Y0)

)
7−→ (t0 + h, Xt0+h)with (Xt)t≥t0 denoting here the strong solution of dXt = a(Xt) dt+b(Xt) dWtand Xt0 = Y0. Euler equi-ontinuity is ensured (due to [5, � 4.5℄).In regard to assumption (A4), we onsider two nonautonomous stohastidi�erential equations whose oe�ients ãi, b̃i : [0, T ] × R −→ R (i = 1, 2)are pieewise onstant w.r.t. time and Λ-Lipshitz ontinuous w.r.t. the seondargument. Then the orresponding strong solutions X̃(1), X̃(2) are known toexist pathwise uniquely [5, � 4.5℄ and, they satisfy

E
(
|X̃(1)

T − X̃
(2)
T |2

)
≤

≤ eC5 (1+T ) T ·
(
3 E
(
|X̃(1)

0 − X̃
(2)
0 |2

)
+

+ C4 (1+T ) ·
∫ T

0

(∥∥ã1(s, ·) − ã2(s, ·)
∥∥2

sup
+
∥∥b̃1(s, ·) − b̃2(s, ·)

∥∥2

sup

)
ds
)due to Gronwall's inequality (see the proof of [5, Theorem 4.5.6, page 139 f.℄).The suitable hoie of saling fators implies assumption (A4).Now we bridge the gap between funtions in Θ̌(E, d, e, ⌊·⌋) and transitions (inthe sense of hypothesis (H3) in � 2) by means of an auxiliary distane funtion.Additionally, a further real omponent is introdued for tehnial reasons. It isjust to reord properly to whih �ball� {⌊·⌋ ≤ r} ⊂ E we have to refer for α,D.(Indeed, the tuple (x, ρ) ∈ E × [0,∞[ is related to {⌊·⌋ ≤ ρ · eρ}. This separateexponential fator is just to failitate updating the radius along transitions.)Proposition 4 Consider Ê := {(x, ρ) ∈ E×R | ⌊x⌋ ≤ ρ · eρ} ⊂ E× [0,∞[with E −→ Ê, x 7−→ (x, ⌊x⌋) and π2 : Ê −→ [0,∞[, (x, ρ) 7−→ ρ. Moreoverde�ne the extensions of d(·, ·), e(·, ·), ⌊·⌋ and eah ϑ ∈ Θ̌(E, d, e, ⌊·⌋) as

d : Ê × Ê −→ [0,∞[,
(
(x1, ρ1), (x2, ρ2)

)
7−→ d(x1, x2),

e : Ê × Ê −→ [0,∞[,
(
(x1, ρ1), (x2, ρ2)

)
7−→ e(x1, x2),

⌊·⌋ : Ê −→ [0,∞[, (x, ρ) 7−→ ⌊x⌋,
ϑ : [0, 1] × Ê −→ Ê,

(
h, (x, ρ)

)
7−→

(
ϑ(h, x), ρ+ γ̂ h

)
.There exist some T > 1 and a funtion d̂ : Ê × Ê −→ [0,∞[ satisfying forany ϑ, τ ∈ Θ̌(E, d, e, ⌊·⌋), x̂, ŷ ∈ Ê, t1, t2, h ≥ 0 with t1 + h, t2 + h ≤ 1 and theabbreviation ρ1 :=

(
max{π2 x̂, π2 ŷ} + γ̂

)
· emax{π2 bx, π2 by} + bγ
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(1.) d(·, ·) ≤ d̂(·, ·) ≤ Č(0) · d(·, ·),
(2.) d̂

(
ϑ(t1+h, x̂), ϑ(t2+h, ŷ)

)
≤ d̂

(
ϑ(t1, x̂), ϑ(t2, ŷ)

)
· eh (1+ α(τ ;ρ1)),

(3.) d̂
(
ϑ(t1+h, x̂), τ(t2+h, ŷ)

)

≤
(
d̂
(
ϑ(t1, x̂), τ(t2, ŷ)

)
+ h · Č(T ) D(ϑ, τ ; ρ1)

)
· eh (1+ α(τ ;ρ1)) .In partiular, eah funtion ϑ ∈ Θ̌(E, d, e, ⌊·⌋) indues a unique transition onthe tuple (Ê, d̂, e, ⌊·⌋) in the sense of hypothesis (H3) in � 2.

Proof . Fix some T > 1 with C(0) e−(T−1) ≤ 1
2 and set d̂ : Ê × Ê −→ [0,∞[

d̂(x̂0, ŷ0) :=

sup
{
e−t
(
d
(
x̂(t), ŷ(t)

)
· e− α̌ρ(t) − Č(T ) ·

∫ t

0

D(ϑ(s), τ(s); ρ(s)) · e−α̌ρ(s) ds
) ∣∣∣

t ∈ [0, T ], α̂, β̂ ≥ 0,

x̂(·) ∈ N (x̂0, t, α̂, β̂, γ̂) related to pieewise onstant ϑ(·) : [0, t] −→ Θ̌,

ŷ(·) ∈ N (ŷ0, t, α̂, β̂, γ̂) related to pieewise onstant τ(·) : [0, t] −→ Θ̌,

ρ(t′) :=
(
max{π2 x̂0, π2 ŷ0} + γ̂ t′

)
· emax{π2 bx0, π2 by0} + bγ t′ ,

α̌ρ(t
′) :=

∫ t′

0

α(τ(s); ρ(s)) ds for eah t′ ∈ [0, t]
}
.(1.) d̂(x̂0, ŷ0) ≥ d(x̂0, ŷ0) is obvious for all x̂0, ŷ0 ∈ Ê (due to the option t = 0).

d̂(·, ·) ≤ Č(0) · d(·, ·) <∞ results diretly from assumption (A4).(2.) This laim is a speial ase of statement (3.) beause D(·, ·; ρ) is assumedto be re�exive in hypothesis (A3).(3.) Choose any ϑ0, τ0 ∈ Θ̌(E, d, e, ⌊·⌋), x̂0, ŷ0 ∈ Ê, t1, t2, h ≥ 0 with
t1 + h ≤ 1, t2 + h ≤ 1 and for s ≥ −h, de�ne the abbreviation

ρ(s) :=
(
max{π2 ϑ0(t1, x̂0), π2 τ0(t2, ŷ0)} + γ̂ · (s+ h)

)
·

· emax{π2 ϑ0(t1,bx0), π2 τ0(t2,by0)} + bγ · (s+h) .In regard to an upper bound of d̂(ϑ0(t1 +h, x̂0), τ0(t2 +h, ŷ0)
), let t ∈ [0, T ],

α̂, β̂ ≥ 0 be arbitrary with α(τ0; ρ1) ≤ α̂ (without loss of generality) andselet any two �Euler urves� x̂(·) ∈ N
(
ϑ0(t1 + h, x̂), t, α̂, β̂, γ̂

)
, ŷ(·) ∈

N
(
τ0(t2 + h, ŷ), t, α̂, β̂, γ̂

) related to pieewise onstant funtions ϑ(·), τ(·) :

[0, t] −→ Θ̌ respetively.Extend x̂(·), ŷ(·) and ϑ(·), τ(·) to [−h, t] aording to x̂(·) := ϑ0(t1+h+ · , x̂0),
ŷ(·) := τ0(t2+h+ · , ŷ0) and ϑ(·) := ϑ0, τ(·) := τ0 in [−h, 0[. Then,
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d
(
x̂(t), ŷ(t)

)
· e− α̌ρ(t) − Č(T )

∫ t

0

D(ϑ, τ ; ρ) e− α̌ρ
∣∣
s
ds

≤ eh α(τ0;ρ1)
(
d
(
x̂(t), ŷ(t)

)
· e−

R

t

−h
α(τ ; ρ) ds− Č(T )

∫ t

−h

D(ϑ, τ ; ρ) e−
R

s

−h
α(τ ; ρ) dr ds

+ Č(T )

∫ 0

−h

D(ϑ, τ ; ρ) e−
R

s

−h
α(τ ; ρ) dr ds

)+and if we now assume t+ h ≤ T in addition,
≤ eh α(τ0;ρ1)

(
d̂
(
x̂(−h), ŷ(−h)

)
et+h + Č(T )

∫ 0

−h

D(ϑ(s), τ(s); ρ(s)) · 1 ds
)

≤ eh α(τ0;ρ1)
(
d̂
(
ϑ0(t1, x̂0), τ0(t2, ŷ0)

)
et+h + Č(T ) h · D(ϑ0, τ0; ρ1)

)
.If t + h > T (i.e. 0 ≤ T − 1 ≤ T − h < t ≤ T ), we onlude fromassumption (A4)

e− t
(
d
(
x̂(t), ŷ(t)

)
· e− α̌ρ(t) − Č(T )

∫ t

0

D(ϑ(s), τ(s); ρ(s)) · e− α̌ρ(s) ds
)

≤ e− t Č(0) · d
(
x̂(0), ŷ(0)

)
≤ 1

2 · d̂
(
ϑ0(t1+h, x̂0), τ0(t2+h, ŷ0)

)and so, this ase is not relevant for estimating d̂(ϑ0(t1+h, x̂0), τ0(t2+h, ŷ0)
) asa supremum. Finally, the upper bound for t+ h ≤ T leads to the laim. �Referenes[1℄ J.-P. Aubin, Mutational and Morphologial Analysis : Tools for ShapeEvolution and Morphogenesis, Birkhäuser 1999.[2℄ J.-P. Aubin, Mutational equations in metri spaes, Set-Valued Analysis, 1(1993), p. 3�46[3℄ Daoyi Xu, Zhigua Yang, Yumei Huang, Existene-uniqueness andontinuation theorems for stohasti funtional di�erential equations. J.Di�erential Equations, 245 (2008), p. 1681�1703.[4℄ K.-J. Engel, R. Nagel, One�Parameter Semigroups of Linear EvolutionEquations. Springer-Verlag 2000.[5℄ P.E. Kloeden, E. Platen, Numerial solution of stohasti di�erentialequations. Seond orreted printing. Springer-Verlag 1995.[6℄ Th. Lorenz, Mutational Analysis: A joint framework for dynamial systemsin and beyond vetor spaes. Habilitationsshrift, Heidelberg University 2009[7℄ Xuerong Mao, Stohasti di�erential equations and appliations. Seondedition. Horwood Publishing Limited, Chihester 2008.
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PROBABILISTIC REPRESENTATION OF SOLUTIONS FORQUASI-LINEAR PARABOLIC PDE VIA FBSDE WITHREFLECTING BOUNDARY CONDITIONSPEDRO MARÍN-RUBIO AND JOSÉ REALDpto. Euaiones Difereniales y Análisis Numério,Universidad de SevillaApdo. de Correos 1160, 41080 Sevilla (SPAIN)pmr�us.es jreal�us.esAbstratA probabilisti representation of the solution (in the visosity sense)of a quasi-linear paraboli PDE system with non-lipshitz terms anda Neumann boundary ondition is given via a fully oupled forward-bakward stohasti di�erential equation with a re�eting term in theforward equation. The extension of previous results onsists on therelaxation on the Lipshitz assumption on the drift oe�ient of theforward equation, using a previous result of the authors.Key words: Probabilisti formulae for PDE, Forward bakward stohastidi�erential equations, Skorokhod problem, Re�eted Stohasti Di�erential Equations.AMS subjet lassi�ations: 60H10, 35K55, 60J60, 60K25.IntrodutionDeeper relations between stohasti di�erential equations and systems of PDEhave been established sine [4℄ developed the theory of bakward stohastidi�erential equations. Roughly speaking, ombining a forward stohastidi�erential equation with a BSDE, the Feyman-Ka formula an be extended tononlinear PDE, and not only in a lassial sense, but also via visosity solutions.Usually, the deterministi problems treated in this way are posed in thewhole domain R

d, or in a bounded domain of R
d with Dirihlet boundaryondition. With a Neumann boundary ondition, the problem was studied byY. Hu using loal time around the boundary of the domain. This tehnique islosely related to a stohasti version of the Skorokhod problem (see e.g. [6℄,for a diret appliation in this sense). We extend these studies and relationsto the ase of fully oupled systems of FBSDER in whih the open set is notneessarily onvex but still smooth (this restrition is for ommodity and maybe removed), and the drift oe�ient of the forward equation is monotone in x,instead of Lipshitz. In this way, we generalize some results from [5℄ and [1℄.109



110 P. Marín-Rubio, J. RealIn this paper we give a probabilisti representation of the solution of a quasi-linear PDE system extending some results of those given in [5℄ and [1℄ on asystem of a fully oupled forward-bakward stohasti di�erential equationswith a re�eting term in the forward equation (FBSDER) and its relation witha system of quasi-linear partial di�erential equations, in short PDE. Preedingworks on this line were due to Y. Hu and to E. Pardoux and S. Zhang (f. [6℄).In our ase, the drift satis�es the monotoniity ondition introdued before,and the domain O is not neessarily onvex. Existene of solution under suhonditions was proved in a preedent paper by the authors (f. [3℄).In Setion 1 we start giving the suitable framework for the re�eted problemand reall a previous result whih will be used later on. In Setion 2, we statethe general framework for the study of a fully oupled FBSDER, and provide aprobabilisti interpretation for a system of quasi-linear PDE with homogeneousNeumann boundary ondition.1 Statement of the �re�eted� problemLet (Ω,F , P ) be a omplete probability spae, {Ft}t≥0 an inreasing and rightontinuous family of sub-σ-algebras of F suh that F0 ontains all the P -nullsets of F , and {Wt; t ≥ 0} an m-dimensional standard {Ft}-Wiener proess.Let O be an open onneted bounded subset of R
d given by O = {φ > 0},with φ ∈ C2(Rd), and suh that ∂O = {φ = 0}, with |∇φ(x)| = 1 for all x ∈ ∂O.Observe that in partiular φ, ∇φ and D2φ are bounded in Ō. Then there existsa onstant C0 > 0 suh that

2(x′ − x,∇φ(x)) + C0|x′ − x|2 ≥ 0, ∀x ∈ ∂O, ∀x′ ∈ Ō. (1)We are also given a �nal time T > 0, and two random funtions:
b : Ω × [0, T ]× Ō → R

d, σ : Ω × [0, T ]× Ō → R
d×m,suh that(i) b and σ are uniformly bounded;(ii) for all x ∈ Ō the proesses b(·, ·, x) and σ(·, ·, x) are {Ft}-progressivelymeasurable;(iii) for all t ∈ [0, T ] and a.s. ω, the funtion b(ω, t, ·) is ontinuous on Ō;(iv) there exist two onstants Lbx

∈ R and Lσx
≥ 0 suh that for all

t ∈ [0, T ] and all x, x′ ∈ Ō,
(x− x′, b(ω, t, x) − b(ω, t, x′)) ≤ Lbx

|x− x′|2, a.s.,

‖σ(ω, t, x) − σ(ω, t, x′)‖ ≤ Lσx
|x− x′|, a.s.,where | · | and ‖ · ‖ denote the usual Eulidean and trae norm for vetors andmatries respetively.From now on, we will omit the expliit dependene of the proesses on ω.
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Xt = x0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs − kt, (2)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s, t ∈ [0, T ], (3)where x0 ∈ Ō is given, and |k|t stands for the total variation of k on [0, t].De�nition 1 A strong solution to the above problem is a pair of {Ft}-adaptedand ontinuous proesses (X, k) de�ned on Ω × [0, T ], the �rst one with valuesin Ō, the seond one with values in R
d and paths of bounded variation in [0, T ],satisfying the equations (2)-(3) a.s. for all t ∈ [0, T ].Main result stated in [3℄, whih generalizes a result by Lions and Sznitman when

b is Lipshitz, is the following:Theorem 1 Under the assumptions (i)-(iv), for eah x0 ∈ Ō given thereexists a unique pair (X, k), strong solution of (2)-(3).2 Forward-Bakward Stohasti Di�erential Equations with Re�e-tion and representation of a PDE systemWe ontinue onsidering the omplete probability spae (Ω,F , P ), and the m-dimensional standard {Ft}-Wiener proess {Wt; t ≥ 0} given in Setion 1,but now we suppose that, for eah t ≥ 0, Ft oinides with the σ-algebra
σ(Ws; 0 ≤ s ≤ t) augmented with all the P -null sets of F .Let T > 0 be �xed, and onsider the open set O introdued in Setion 1.For eah integer l ≥ 1, we shall denote byM2

Ft
(0, T ; Rl) the Hilbert subspaeof L2(Ω × (0, T ); Rl) formed by those elements that are {Ft}-progressivelymeasurable, and we will write L2

Ft
(Ω;C([0, T ]; Rl)) to denote the spae of theelements of L2(Ω;C([0, T ]; Rl)) that are {Ft}-progressively measurable. Thus,

L2
Ft

(Ω;C([0, T ]; Rl)) is a Banah subspae of L2(Ω;C([0, T ]; Rl)).Similarly, we denote by M2
Ft

(0, T ; Ō) the omplete metri subspae of thespae M2
Ft

(0, T ; Rd) onstituted by the elements X ∈ M2
Ft

(0, T ; Rd) suh thata.e. t ∈ (0, T ), Xt ∈ Ō a.s.; we shall also use L2
Ft

(Ω;C([0, T ]; Ō)) to denote theomplete metri subspae of L2
Ft

(Ω;C([0, T ]; Rl)) formed by those elements Xin the last spae suh that a.s. Xt ∈ Ō for all t ∈ [0, T ]. Finally, we shall denoteby L2(Ω,FT ; Ō) the omplete metri subspae of L2(Ω,FT ; Rd) formed by the
FT -measurable random variables ξ ∈ L2(Ω; Rd) suh that a.s. ξ ∈ Ō.We are given four random funtions:
b : Ω × [0, T ]× Ō × R

n × R
n×m → R

d, f : Ω × [0, T ]× Ō × R
n × R

n×m → R
n,

σ : Ω × [0, T ]× Ō × R
n × R

n×m → R
d×m, h : Ω × Ō → R

n,suh that



112 P. Marín-Rubio, J. Real(i') b and σ are uniformly bounded;(ii') for all (x, y, z) ∈ Ō×R
n ×R

n×m the proesses b(·, x, y, z), f(·, x, y, z)and σ(·, x, y, z) are {Ft}-progressively measurable, and the random variable
h(·, x) is FT -measurable;(iii') for all (t, x, y, z) ∈ [0, T ] × Ō × R

n × R
n×m the funtions b(t, ·, y, z)and f(t, x, ·, z) are a.s. ontinuous on Ō and R

n respetively;(iv') there exist real onstants Lbx
and Lfy

, and nonnegative onstants
Lby

, Lbz
, Lfx

, Lfz
, Lσx

, Lσy
, Lσz

, Lh and l0 suh that for all t ∈ [0, T ], all
x, x′ ∈ Ō, all y, y′ ∈ R

n, all z, z′ ∈ R
n×m, and a.s.,

(x− x′, b(t, x, y, z) − b(t, x′, y, z)) ≤ Lbx
|x− x′|2,

|b(t, x, y, z) − b(t, x, y′, z′)| ≤ Lby
|y − y′| + Lbz

‖z − z′‖,

‖σ(t, x, y, z) − σ(t, x′, y′, z′)‖2 ≤ L2
σx
|x− x′|2 + L2

σy
|y − y′|2 + L2

σz
‖z − z′‖2,

(y − y′, f(t, x, y, z) − f(t, x, y′, z)) ≤ Lfy
|y − y′|2,

|f(t, x, y, z) − f(t, x′, y, z′)| ≤ Lfx
|x− x′| + Lfz

‖z − z′‖,
|f(t, x, y, z)| ≤ |f(t, x, 0, z)|+ l0(1 + |y|),

|h(x) − h(x′)| ≤ Lh|x− x′|;(v') E

∫ T

0

|f(t, 0, 0, 0)|2 dt+ E|h(0)|2 <∞.We want to study the following problem:
Xt = x0 +

∫ t

0

b(s,Xs, Ys, Zs) ds+

∫ t

0

σ(s,Xs, Ys, Zs) dWs − kt, (4)
Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, (5)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s, t ∈ [0, T ], (6)where x0 ∈ Ō is given.De�nition 2 A solution to the problem (4)-(6) is a set (X,Y, Z, k) of four
{Ft}-progressively measurable proesses de�ned on Ω × [0, T ], suh that X isontinuous with values in Ō, k is ontinuous with values in R

d and paths ofbounded variation in [0, T ], (Y, Z) ∈M2
Ft

(0, T ; Rn)×M2
Ft

(0, T ; Rn×m), and theequations (4)-(6) are satis�ed a.s. for all t ∈ [0, T ].For the resolution of the above fully oupled FBSDER, we will use the followingresult, that is a diret onsequene of Theorem 1:Corollary 2 Under the assumptions (i')-(iv'), if (Y, Z) ∈ M2
Ft

(0, T ; Rn) ×
M2

Ft
(0, T ; Rn×m) is �xed, there exists a unique pair (X, k) of {Ft}-progressivelymeasurable proesses de�ned on Ω×[0, T ], suh that X is ontinuous with values



Probabilisti representation of PDE via FBSDER 113in Ō, k is ontinuous with values in R
d and paths of bounded variation in [0, T ],and they satisfy a.s. for all t ∈ [0, T ] that

Xt = x0 +

∫ t

0

b(s,Xs, Ys, Zs) ds+

∫ t

0

σ(s,Xs, Ys, Zs) dWs − kt, (7)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s. (8)We will also need the following well-known result (see for instane Pardoux'snotes at Geilo, 1996) for the bakward equation:Theorem 3 Under the assumptions (ii')-(v'), let be given X ∈ M2
Ft

(0, T ; Ō)and ξ ∈ L2(Ω,FT ; Ō). Then, there exists a unique pair (Y, Z) ∈M2
Ft

(0, T ; Rn)×
M2

Ft
(0, T ; Rn×m) suh that

Yt = h(ξ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, (9)a.s. for all t ∈ [0, T ]. Moreover, we have that Y ∈ L2
Ft

(Ω;C([0, T ]; Rn)).Using the two results above, it is not di�ult to prove existene and uniquenessof solution of problem (4)-(6) if T is small enough. More exatly, we have thefollowing result, whose proof we will omit for the sake of brevity:Theorem 4 Suppose the assumptions (i')-(v'), and that moreover σ does notdepend on z. Then, there exists a T∗ > 0 suh that if T ≤ T∗, the appliation
Φ de�ned from

L2
Ft

(Ω;C([0, T ]; Ō)) × L2
Ft

(Ω;C([0, T ]; Rn)) ×M2
Ft

(0, T ; Rn×m)on itself by Φ(X,Y, Z) = (X̄, Ȳ , Z̄), with (X̄, Ȳ , Z̄) the unique solution of
X̄t = x0 +

∫ t

0

b(s, X̄s, Ys, Zs) ds+

∫ t

0

σ(s, X̄s, Ys) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,

Ȳt = h(X̄T ) +

∫ T

t

f(s, X̄s, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,a.s. for all t ∈ [0, T ], is a ontration. So, if T ≤ T∗, the problem (4)-(6) has aunique solution.For the resolution of the above fully oupled FBSDER for any T > 0, wefollow [5℄ and [1℄.We shall denote by Γ1 the mapping
Γ1 : M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m) →M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m),



114 P. Marín-Rubio, J. Realde�ned by Γ1(Y, Z) = (Ȳ , Z̄), with (X̄, Ȳ , Z̄, k̄) the unique solution of
X̄t = x0 +

∫ t

0

b(s, X̄s, Ys, Zs) ds+

∫ t

0

σ(s, X̄s, Ys, Zs) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,

Ȳt = h(X̄T ) +

∫ T

t

f(s, X̄s, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,a.s. for all t ∈ [0, T ].We will denote by Γ2 the mapping
Γ2 : M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō) →M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō),de�ned by Γ2(X, ξ) = (X̄, X̄T ), with X̄ suh that (X̄, Ȳ , Z̄, k̄) is the uniquesolution of̄

Yt = h(ξ) +

∫ T

t

f(s,Xs, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,

X̄t = x0 +

∫ t

0

b(s, X̄s, Ȳs, Z̄s) ds+

∫ t

0

σ(s, X̄s, Ȳs, Z̄s) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,a.s. for all t ∈ [0, T ].By Corollary 2 and Theorem 3, under the onditions (i')-(v') the maps
Γ1 and Γ2 are well de�ned. Also, it is lear that to solve the problem (4)-(6) is equivalent to �nding a �xed point for Γ1 or Γ2. Thus, in order toprove existene and uniqueness of solution to problem (4)-(6), it is enoughto �nd a Hilbert norm in M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m), suh that Γ1 is aontration for this norm. Analogously, it is enough to �nd a omplete metriin M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō), for whih the map Γ2 is a ontration.From now on, for l ≥ 1 integer, and λ ∈ R, we will denote by ‖ · ‖λ the normon M2

Ft
(0, T ; Rl), equivalent to the usual one, given by

‖ζ‖2
λ = E

∫ T

0

e−λs|ζ|2ds.For the sake of brevity on these notes we omit here the estimates onthe di�erene of two solutions (X, k) and (X ′, k′) assoiated respetively toproesses (Y, Z) and (Y ′, Z ′), or the inverse. If we ombine these estimatesin the two possible orders, to obtain estimations for Γ1 and Γ2, we have twopossibilities.On the one hand, one an searh for a λ ∈ R suh that, with the norm on
M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m) de�ned by

‖(Y, Z)‖2
λ = ‖Y ‖2

λ + ‖Z‖2
λ,



Probabilisti representation of PDE via FBSDER 115the mapping Γ1 is a ontration.On the other hand, one an searh for a λ suh that, with the metrion M2
Ft

(0, T ; Ō) × L2(Ω,FT ; Ō) indued by the norm on M2
Ft

(0, T ; Rd) ×
L2(Ω,FT ; Rd) de�ned by

‖(X, ξ)‖2
λ = exp(−λT )E|ξ|2 + λ1‖X‖2

λ,the mapping Γ2 is a ontration.Then, one obtains existene and uniqueness for (4)-(6) that generalize to bmonotone and O not neessarily onvex some of the results in [5℄ and [1℄.For example, existene and uniqueness of solution for (4)-(6) hold when itsoupling is weak, that is, when dependene of b and σ respet to their variables yand z is small, or, analogously for the bakward equation, when the dependeneof f and h with respet to x is small. More exatly, we have:Theorem 5 Let onditions (i')-(v') hold. Then there exists an ε0 > 0depending on Lσx
, Lbx

, Lfx
, Lfy

, Lfz
, Lh and T suh that if Lby

, Lbz
, Lσy

,
Lσz

∈ [0, ε0), then there exists λ suh that Γ1 is a ontration, and thus thereexists a unique solution to (4)-(6). On the other hand, the same thesis holdsfor Γ2, hanging roles of Lby
, Lbz

, Lσy
, and Lσz

, with Lh and Lfx
.Also, using Γ2, and reasoning as in [1℄ or [2℄, one an proveTheorem 6 Let onditions (i')-(v') hold, and suppose one of the followingtwo onditions:a) If h is independent of x, there exists α ∈ (0, 1) suh that µ(α, T )Lfx

C3 < λ1.b) If h does depend on x, there exists α ∈ (k1L
2
σz
L2

h, 1) suh that µ(α, T )L2
h < 1.Then, there exists a unique solution for (4)-(6).Remark 1 Reasoning as in [2℄, one an make some (tehnial) improvements.Namely, it is possible to onsider that σ an depend on z, but introduingompatibility onditions. On other hand, if Lfy

is negative enough, then (4)-(6)has a unique solution for all �nal time T > 0.Finally, as in [5℄, and in [1℄, with the previous results on the problem (4)-(6), one an prove existene of visosity solution to a homogeneous Neumannproblem for an assoiated system of quasi-linear paraboli PDE. We brie�yreall here how this an be done.For eah (t, x) ∈ [0, T ]× Ō, onsider the problem
Xt,x

s = x+

∫ s

t

b(r,Xt,x
r , Y t,x

r , Zt,x
r )dr +

∫ s

t

σ(r,Xt,x
r , Y t,x

r , Zt,x
r )dWr − kt,x

s ,

Y t,x
s = h(Xt,x

T ) +

∫ T

s

f(r,Xt,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr,

kt,x
s =−

∫ s

t

∇φ(Xt,x
r ) d|kt,x|r, |kt,x|s =

∫ s

t

1{Xt,x
r ∈∂O} d|kt,x|r, s ∈ [t, T ].



116 P. Marín-Rubio, J. RealIt is immediate to extend to this family of problems the previous theorems onexistene and uniqueness of solution for problem (4)-(6).To establish the relation with PDE, we assume now that b, σ, f and h aredeterministi, moreover, we suppose that σ does not depend on z. Also, forsimpliity, we onsider n = 1. For short, we introdue the following notation:
(Lϕ)(s, x, y, z) =

1

2

d∑

i,j=1

(σσ∗)ij(s, x, y)
∂2ϕ

∂xi∂xj
(s, x) + (b(s, x, y, z),∇ϕ(s, x)),and onsider the homogeneous Neumann problem

∂u

∂t
(t, x) + (Lu)(t, x, u(t, x), (∇u(t, x))∗σ(t, x, u(t, x)))

+f(t, x, u(t, x), (∇u(t, x))∗σ(t, x, u(t, x))) = 0, (t, x) ∈ (0, T )×O,
∂u

∂n
(t, x) = 0, (t, x) ∈ (0, T )× ∂O,

u(T, x) = h(x), x ∈ O. (10)Then, we have, for example, the following result, that an be proved as Theorem3.8 in [1℄, and atually an also be adapted to deal with a system.Theorem 7 Under the assumptions of Theorem 6, suppose, moreover, n = 1.Suppose also that b, σ, f and h are deterministi, ontinuous in all its variables,and σ does not depend on z. Then, the funtion u de�ned by u(t, x) = Y x,t
t ,

(t, x) ∈ [0, T ]× Ō, is a visosity solution of (10).Referenes[1℄ J. Ma and J. Cvitani¢, Re�eted forward-bakward SDEs and obstaleproblems with boundary onditions, J. Appl. Math. Stohasti Anal. 14(2)(2001), 113�138.[2℄ J. Ma and J. Yong, Forward-Bakward Stohasti Di�erential Equationsand Their Appliations, Vol. 1702 of Leture Notes in Mathematis,Springer-Verlag, Berlin, 1999.[3℄ P. Marín-Rubio and J. Real, Some results on stohasti di�erentialequations with re�eting boundary onditions, J. Theoret. Prob. 17(3)(2004), 705�716.[4℄ E. Pardoux and S. G. Peng, Adapted solution of a bakward stohastidi�erential equation, Systems Control Lett. 14(1) (1990), 55�61.[5℄ E. Pardoux and S. Tang, Forward-bakward stohasti di�erentialequations and quasilinear paraboli PDEs, Probab. Theory Related Fields114(2) (1999), 123�150.[6℄ E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumannboundary value problems, Probab. Theory Related Fields 110(4) (1998),535�558.
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EXISTENCE AND UNIQUENESS OF SOLUTIONS, ANDPULLBACK ATTRACTOR FOR A SYSTEM OF GLOBALLYMODIFIED 3D�NAVIER-STOKES EQUATIONS WITH FINITEDELAYANTONIO M. MÁRQUEZDpto. de Eonomía, Métodos Cuantitativos e Historia Eonómia,Universidad Pablo de OlavideCarretera de Utrera km. 1, E-41013 Sevillaammardur�upo.esAbstratWe �rst study the existene and uniqueness of strong solutions of athree dimensional system of globally modi�ed Navier-Stokes equationswith �nite delay in the loally Lipshitz ase. The asymptoti behaviourof solutions, and the existene of pullbak attrator are also analyzed.Key words: 3-dimensional Navier-Stokes equations, Galerkin approxima-tions, weak solutions, existene and uniqueness of strong solutions, pullbak attrators.AMS subjet lassi�ations: 35Q30, 35K90, 37L30.1 IntrodutionLet Ω ⊂ R

3 be an open bounded set with regular boundary Γ, and onsider thefollowing system of globally modi�ed Navier-Stokes equations (GMNSE) on Ωwith a homogeneous Dirihlet boundary ondition




∂u

∂t
− ν∆u + FN (‖u‖) [(u · ∇)u] + ∇p = f(t), in (0,+∞) × Ω,

∇ · u = 0 in (0,+∞) × Ω,

u = 0 on (0,+∞) × Γ,

u(0, x) = u0(x), x ∈ Ω,

(1)where ν > 0 is the kinemati visosity, u is the veloity �eld of the �uid, p thepressure, u0 the initial veloity �eld, f(t) a given external fore �eld, and FN :
R

+ → R
+ is de�ned by

FN (r) := min

{
1,
N

r

}
, r ∈ R

+,117



118 A.M. Márquezfor some N ∈ R
+.The GMNSE (1) has been introdued and studied in [1℄ (see also [2℄, [3℄, [8℄and [9℄). In this paper we are interested in the ase in whih terms ontaining�nite delays appear. We onsider the following version of GMNSE (we will referto it as GMNSED):




∂u

∂t
− ν∆u+ FN (‖u‖) [(u · ∇)u] + ∇p

= G(t, u(t− ρ(t))) in (τ,+∞) × Ω,

∇ · u = 0 in (τ,+∞) × Ω,

u = 0 on (τ,+∞) × Γ,

u(τ, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t− τ, x), in (τ − h, τ) × Ω,

(2)
where τ ∈ R is an initial time, the term G(t, u(t− ρ(t))) is an external fore de-pending eventually on the value u(t−ρ(t)), ρ(t) ≥ 0 is a delay funtion and φ is agiven veloity �eld de�ned in (−h, 0), with h > 0 a �xed time suh that ρ(t) ≤ h.The aim of this paper is to report on some reent results onerning theexistene, uniqueness and asymptoti behaviour of solutions of (2). The detailedproofs of these results an be found in [4℄. In the next setion we state somepreliminaries, establish the framework for our problem, and the existene anduniqueness of weak and strong solutions. In Setion 3 we analyze the asymptotibehaviour of solutions, obtaining �nally the existene of pullbak attrator forour model.2 PreliminariesTo set our problem in the abstrat framework, we onsider the following usualabstrat spaes (see [12℄ and [14, 15℄):

V =
{
u ∈ (C∞

0 (Ω))
3

: div u = 0
}
,

H = the losure of V in (L2(Ω))3 with inner produt (·, ·) and assoiate norm
|·| , where for u, v ∈ (L2(Ω))3,

(u, v) =

3∑

j=1

∫

Ω

uj(x)vj(x)dx,
V = the losure of V in (H1

0 (Ω))3 with salar produt ((·, ·)) and assoiate norm
‖·‖ , where for u, v ∈ (H1

0 (Ω))3,

((u, v)) =

3∑

i,j=1

∫

Ω

∂uj

∂xi

∂vj

∂xi
dx.



Globally Modi�ed Navier-Stokes equations with delay 119It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injetions are dense and ompat.Finally, we will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairingbetween V and V ′.Now we de�ne the trilinear form b on V × V × V by
b(u, v, w) =

3∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wj dx, ∀u, v, w ∈ V,and we denote

bN (u, v, w) = FN (‖v‖)b(u, v, w), ∀u, v, w ∈ V,and
〈BN (u, v), w〉 = bN(u, v, w), ∀u, v, w ∈ V.The form bN is linear in u and w, but it is nonlinear in v.We also onsider A : V → V ′ de�ned by 〈Au, v〉 = ((u, v)). Denoting

D(A) = (H2(Ω))3 ∩ V, then Au = −P∆u, ∀u ∈ D(A), is the Stokes operator(P is the ortho-projetor from (L2(Ω))3 onto H). Moreover, we assume
G : R ×H −→ H , is suh that1) G(·, u) : R −→ H is measurable, ∀u ∈ H,2) there exists a nonnegative funtion g ∈ Lp

loc(R) for some 1 ≤ p ≤ +∞,and a nondereasing funtion L : (0,∞) → (0,∞), suh that for all R > 0if |u| , |v| ≤ R, then
|G(t, u) −G(t, v)| ≤ L(R)g1/2(t) |u− v| ,for all t ∈ R, and3) there exists a nonnegative funtion f ∈ L1

loc(R), suh that for any u ∈ H ,
|G(t, u)|2 ≤ g(t) |u|2 + f(t), ∀ t ∈ R.Finally, we suppose φ ∈ L2p′

(−h, 0;H) and u0 ∈ H , where 1
p + 1

p′ = 1.In this situation, we onsider a delay funtion ρ ∈ C1(R) suh that 0 ≤ ρ(t) ≤ hfor all t ∈ R, and there exists a onstant ρ∗ satisfying
ρ′(t) ≤ ρ∗ < 1 ∀ t ∈ R.De�nition 1 Let τ ∈ R, u0 ∈ H and φ ∈ L2p′

(−h, 0;H) be given. A weaksolution of (2) is a funtion
u ∈ L2p′

(τ − h, T ;H) ∩ L2(τ, T ;V ) ∩ L∞(τ, T ;H) for all T > τ ,suh that





ddtu(t) + νAu(t) +BN (u(t), u(t)) = G(t, u(t− ρ(t))) in D′(τ,+∞;V ′),

u(τ) = u0,
u(t) = φ(t− τ) t ∈ (τ − h, τ).



120 A.M. MárquezRemark 1 We suppose u is a weak solution of (2) and we de�ne g̃(t) =
g ◦θ−1(t), where θ : [τ,+∞) −→ [τ −ρ(τ),+∞) is the di�erentiable and stritlyinreasing funtion given by θ(s) = s − ρ(s). Then, taking into aount that
g̃ ∈ Lp(τ − ρ(τ), T ) for all T > τ , we have that G(t, u(t − ρ(t))) belongs to
L2(τ, T ;H) for all T > τ .Then, ddtu(t) ∈ L2(τ, T ;V ′), and onsequently (see [15℄) u ∈ C([τ,+∞);H)and satis�es the energy equality, for all τ ≤ s ≤ t,

|u(t)|2 − |u(s)|2 + 2ν

∫ t

s

‖u(r)‖2 dr = 2

∫ t

s

(G(r, u(r − ρ(r))), u(r)) dr. (3)The following theorem, whih improves Theorem 3 in [5℄, states the existeneand uniqueness of weak and/or strong solutions.Theorem 1 Under the onditions 1)-3) in the previous setion, assumethat τ ∈ R, u0 ∈ H and φ ∈ L2p′

(−h, 0;H) are given. Then, there exists aunique weak solution u of (2) whih is, in fat, a strong solution in the sensethat
u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)), for all T − τ > ε > 0. (4)Moreover, if u0 ∈ V , then

u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)), for all T > τ. (5)3 Asymptoti behaviour of solutionsIn this setion we �rst establish a result about the asymptoti behavior of thesolutions of problem (2) when t goes to +∞.Theorem 2 Let us suppose that 1)-3) hold with g ∈ L∞(R), and assumealso that ν2λ2
1(1 − ρ∗) > |g|∞, where |g|∞ := ‖g‖L∞(R).Let us denote ε > 0 the unique root of ε − νλ1 + |g|∞eεh

νλ1(1−ρ∗) = 0. Then,for any (u0, φ) ∈ V × L2(−h, 0;H), and any τ ∈ R, the orresponding solution
u(t; τ, u0, φ) of problem (2) satis�es

∣∣u(t; τ, u0, φ)
∣∣2 ≤

(∣∣u0
∣∣2 +

|g|∞eεh

νλ1(1 − ρ∗)

∫ 0

−h

eεs |φ(s)|2 ds) eε(τ−t)

+
e−εt

νλ1

∫ t

τ

eεsf(s) ds, for all t ≥ τ.In partiular, if ∫∞
τ eεsf(s) ds < ∞, then every solution u(t; τ, u0, φ) of (2)onverges exponentially to 0 as t→ +∞.Now, we study the existene of global attrator for the dynamial systemgenerated by our problem. As this model is non-autonomous, our analysis



Globally Modi�ed Navier-Stokes equations with delay 121requires of the theory of pullbak attrator whih we will introdued below (see[7℄, [10℄ and [11℄).Let X be a metri spae.De�nition 2 A family of mappings {U(t, τ) : X → X : t, τ ∈ R, t ≥ τ} is saidto be a proess (or a two�parameter semigroup, or an evolution semigroup) in
X if

U(t, r)U(r, τ) = U(t, τ) for all t ≥ r ≥ τ,

U(τ, τ) = Id for all τ ∈ R.The proess U(·, ·) is said to be ontinuous if the mapping x → U(t, τ)x isontinuous on X for all t, τ ∈ R, t ≥ τ .Reall that dist(A,B) denotes the Hausdor� semidistane between the sets
A and B, whih is given by

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), for A,B ⊂ X.De�nition 3 Let U(·, ·) be a proess in the metri spae X. A family ofompat sets {A(t)}t∈R
is said to be a (global) pullbak attrator for U(·, ·)if, for every t ∈ R, if follows(i) U(t, τ)A(τ) = A(t) for all τ ≤ t (invariane), and(ii) lim

τ→−∞
dist(U(t, τ)D,A(t)) = 0 (pullbak attration) for all bounded subset

D ⊂ X.The onept of pullbak attrator is related to that of pullbak absorbingset.De�nition 4 The family of subsets {B(t)}t∈R
of X is said to be pullbakabsorbing with respet to the proess U (·, ·) if, for every t ∈ R and all boundedsubset D ⊂ X, there exists τD(t) ≤ t suh that

U(t, τ)D ⊂ B(t), for all τ ≤ τD(t).In fat, as happens in the autonomous ase, the existene of ompatpullbak attrating sets is enough to ensure the existene of pullbak attrators.The following result an be found in [7℄ and [13℄ (see also [6℄).Theorem 3 Let U(·, ·) be a ontinuous proess on the metri spae X. If thereexists a family of ompat pullbak attrating sets {B(t)}t∈R
, then there existsa pullbak attrator {A(t)}t∈R

, with A(t) ⊂ B(t) for all t ∈ R, given by
A(t) =

⋃

D⊂XboundedΛD(t), where ΛD(t) =
⋂

n∈N

⋃

τ≤t−n

U(t, τ)D.



122 A.M. MárquezNow we will establish the existene of the pullbak attrator for our GMNSEDmodel (2).First we onstrut the assoiated proess. To this end, assume that
G : R × H → H satis�es 1), 2) and 3) with g ∈ L∞(R). Thus, withoutloss of generality we an assume that G satis�es 2) with g ≡ 1, and thereexists a nonnegative onstant a suh that

|G(t, u)|2 ≤ a|u|2 + f(t) ∀ (t, u) ∈ R ×H. (6)We will assume moreover that
f ∈ L∞

loc(R). (7)Under these assumptions, for eah initial time τ ∈ R, and any φ ∈
C(−h, 0;H), Theorem 1 ensures that if we take u0 = φ(0), problem (2)possesses a unique solution u(·; τ, φ) = u(·; τ, φ(0), φ), whih belongs to thespae C([τ − h, T ];H) ∩ L2(τ, T ;V ) ∩ C([τ + ǫ, T ];V ) ∩ L2(τ + ǫ, T ;D(A)) forall T > τ + ǫ > τ.Then, we de�ne a proess in the phase spae CH = C([−h, 0];H) with supnorm, ‖φ‖CH

= sups∈[−h,0] |φ(s)|, as the family of mappings U(t, τ) : CH → CHgiven by
U(t, τ)φ = ut(·; τ, φ), (8)for any φ ∈ CH , and any τ ≤ t, where ut(·; τ, φ) ∈ CH is de�ned by

ut(s; τ, φ) = u(t+ s; τ, φ) ∀ s ∈ [−h, 0]. (9)Proposition 4 It is easy to hek that if G satis�es 1), 2) with g = 1, (6)and (7), then the family of mappings U(τ, t), τ ≤ t, de�ned by (8) and (9) is aontinuous proess on CH .Now, we will obtain that, under suitable assumptions, there exists a familyof bounded pullbak absorbing sets in CH and then, another one in CV , for theproess U(t, τ).Theorem 5 Assume that G satis�es 1), 2) with g = 1, (6), (7), and
ν2λ2

1(1 − ρ∗) > a.Let ε > 0 denote the unique solution of ε− νλ1 + aeεh

νλ1(1−ρ∗) = 0.Let us suppose that ∫ 0

−∞ eεrf(r) dr <∞, and de�ne
ρH(t) = 1 +

eε(1+h−t)

νλ1

∫ t

−∞
eεrf(r) dr t ∈ R.Then, for every bounded subset D ⊂ CH there exists a TD > 1+ h suh thatfor any t ∈ R and all φ ∈ D one has

|u(s; τ, φ)|2 ≤ ρH(t) ∀ s ∈ [t− h− 1, t], for all τ ≤ t− TD.



Globally Modi�ed Navier-Stokes equations with delay 123As a diret onsequene of the preeding result, we get the existene of thefamily of bounded absorbing sets in CH .In fat, one an prove the following result of existene of an absorbing familyof bounded sets in CV = C([−h, 0];V ) and a neessary bound on the term∫ t+θ2

t+θ1
|Au(r)|2 dr.Theorem 6 Under the assumptions in Theorem 5, there exist two positivefuntions ρV , F ∈ C(R) suh that for any bounded set D ⊂ CH and for any

t ∈ R,
‖u(t; τ, φ)‖2 ≤ ρV (t) ∀ τ ≤ t− TD, ∀φ ∈ D,and

∫ t+θ2

t+θ1

|Au(r; τ, φ)|2 dr ≤ F (t), ∀ τ ≤ t−TD−h, ∀ θ1 ≤ θ2 ∈ [−h, 0], ∀φ ∈ D,where TD is given in Theorem 5.Finally, under an additional assumption, we an ensure the existene of thepullbak attrator.Theorem 7 Under the assumptions in Theorem 5, suppose moreover that
sup
s≤0

e−εs

∫ s

−∞
eεrf(r) dr <∞.Then, there exists a pullbak attrator {ACH

(t)}t∈R for the proess U(·, ·) in
CH de�ned by (8) and (9). Moreover, ACH

(t) is a bounded subset of CV forany t ∈ R.Referenes[1℄ Caraballo, T., Kloeden, P.E., & Real, J. [2006℄ Unique strong solutionsand V-attrators of a three dimensional system of Globally Modi�edNavier-Stokes equations, Advaned Nonlinear Studies, 6, 411-436.[2℄ Caraballo, T., Kloeden, P.E., & Real, J. [2008℄ Invariant measuresand statistial solutions of the globally modi�ed Navier-Stokes equations,Disrete Contin. Dyn. Syst. Ser. B, 10, 761�781.[3℄ Caraballo, T., Kloeden, P.E., Langa, J.A., Real, J. & Valero, J.[2009℄ The three dimensional globally modi�ed Navier-Stokes equations,Mathematial Problems in Engineering Aerospae and Sienes, Vol .10,Chapter 2.[4℄ Caraballo, T., Márquez, A.M., & Real, J. [℄ Three dimensional system ofglobally modi�ed Navier-Stokes equations with delay, Int. J. Bifur. Chaos,to appear.
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UPPER AND LOWER SOLUTIONS METHOD FOR FUZZYDIFFERENTIAL EQUATIONSJUAN J. NIETO AND ROSANA RODRíGUEZ-LÓPEZDpto. Análisis Matemátio, University of Santiago de Compostela15782 SANTIAGO DE COMPOSTELAjuanjose.nieto.roig�us.es, rosana.rodriguez.lopez�us.esAbstratKey words: Fuzzy di�erential equations, Existene of solution, Upper andlower solutions, Monotone method.AMS subjet lassi�ations: 26E50, 34A07, 34K36.1 IntrodutionFators whih in�uene the behavior of real phenomena are very often impreisedue to inexat measurements or impreise data. Fuzzy mathematis an beused to handle this kind of unertainty and make preditions about the hangesprodued in a ertain proess.We onsider a model onsisting on a �rst-order fuzzy di�erential equationand illustrate how the existene of solutions an be dedued onsidering theexistene of an adequate pair of upper and lower solutions. We mention thatour approah onsiders the onept of di�erentiability of fuzzy funtions in thesense of Hukuhara.Upper and lower solutions method is shown to be e�etive for the studyof the initial value problems for fuzzy di�erential equations, but also for othersituations, suh as periodi boundary value problems.For the development of the method of upper and lower solutions forfuzzy di�erential equations, we onsider a partial ordering in the spae E1 ofnormal, upper semiontinuous, fuzzy-onvex and ompat-supported mappings

u : R −→ [0, 1]. The expression of the di�erential problem on its equivalentintegral form and the appliation of some �xed point results allow to deduethe existene of solution, and even uniqueness of solutions.On the other hand, for the development of the monotone iterative tehniquefor �rst-order fuzzy di�erential equations, it is required to prove some additionalresults onerning preservation of ordering in onvergene and the appliationof (relative) ompatness riteria in the spae E1.The limitations of the solutions to fuzzy di�erential equations from the pointof view of Hukuhara di�erentiability are skipped by the introdution of impulses.125



126 J.J. Nieto, R. Rodríguez-López2 Some basi oneptsIn the spae of n-dimensional fuzzy sets En, we onsider the metri
d∞(x, y) = sup

a∈[0,1]

dH([x]a, [y]a), x, y ∈ En,where dH represents the Hausdor� distane in the spae of nonempty ompatand onvex subsets of R
n, denoted by Kn

C .A fuzzy di�erential equation u′(t) = f(t, u(t)), t ∈ [t0,+∞), where t0 ∈ Rand f : [t0,+∞) × En −→ En, an be written on its integral representation
x(t) = x(t0) +

∫ t

t0
f(s, x(s)) ds, t ≥ t0. In the sequel, for simpliity, we assumethat t0 = 0.If we onsider the set of fuzzy intervals E1, then we use the followingnotation: for x ∈ E1, the level sets of x are denoted by

[x]a = [xal, xar], for all a ∈ [0, 1],but we also use the parametri funtions to represent fuzzy intervals xL :
[0, 1] −→ R, xL(a) = xal, a ∈ [0, 1], xR : [0, 1] −→ R, xR(a) = xar, a ∈ [0, 1].3 Upper and lower solutionsWe onsider the �rst-order fuzzy di�erential equation

u′(t) = f(t, u(t)), t ∈ [0,+∞), (1)where f : [0,+∞) × En −→ En is a fuzzy-valued funtion.First, onsider n = 1. In order to de�ne the onepts of upper and lowersolutions to problem (1), we de�ne the following ordering relations in the spaeof fuzzy intervals E1.De�nition 1 Given x, y ∈ E1, we say that x ≤ y if and only if xal ≤
yal and xar ≤ yar, for every a ∈ [0, 1].De�nition 2 Given x, y ∈ E1, we say that x � y if and only if xal ≥
yal and xar ≤ yar, for every a ∈ [0, 1], that is, [x]a ⊆ [y]a, ∀ a ∈ [0, 1].Remark 1 In terms of the parametri funtions, x ≤ y is equivalent to
xL ≤ yL and xR ≤ yR in [0, 1], and x � y is equivalent to yL ≤ xL and xR ≤
yR in [0, 1].Note that the ordering relation � makes sense also for n > 1, that is, given
x, y ∈ En, we say that x � y if and only if [x]a ⊆ [y]a, ∀ a ∈ [0, 1].These ordering relations an be also extended to the spae of fuzzy-valuedfuntions de�ned on a ertain real interval.De�nition 3 Given f, g : [a, b] → E1, we say that f ≤ g if f(t) ≤ g(t), forevery t ∈ I. A similar onept an be given for the ordering relation �.



Upper and lower solutions method for fuzzy di�erential equations 127Next, we are in onditions to de�ne the onepts of upper and lower solutionof (1).De�nition 4 A funtion α ∈ C1([0,+∞), E1) is a ≤-lower solution for (1) if
α′(t) ≤ f(t, α(t)), t ∈ [0,+∞).We de�ne an ≤-upper solution β ∈ C1([0,+∞), E1) as a funtion satisfying thereversed inequality.Analogous onepts an be de�ned for the partial ordering �.We see how the existene of solution for problem (1) an be derived fromthe existene of appropriate upper and lower solutions.4 Existene of solution to fuzzy di�erential equations via upper andlower solutions methodFirst, we reall some extensions of the Banah �xed point theorem to partiallyordered sets whih are appliable in the study of the existene and uniquenessof solution for fuzzy di�erential and fuzzy integral equations.The following �xed point result from [14℄ is useful to obtain the existene ofsolution to di�erential and integral equations assuming the existene of a lowersolution.Theorem 1 Let (X,≤) be a partially ordered set and suppose that there existsa metri d in X suh that (X, d) is a omplete metri spae. Assume that f isontinuous or X satis�es thatif a nondereasing sequene {xn} → x in X, then xn ≤ x, ∀n. (2)Let f : X −→ X be a monotone nondereasing mapping suh that there exists

k ∈ [0, 1) with d(f(x), f(y)) ≤ kd(x, y), ∀x ≥ y. If there exists x0 ∈ X with
x0 ≤ f(x0), then f has a �xed point.This result extends some results in [22℄, and the addition of the hypothesisevery pair of elements in X has a lower bound or an upper bound, (3)provides uniqueness of the �xed point.In Theorem 2.4 [14℄, assumptions of Theorem 1 are adapted in order toobtain the existene of a �xed point of f , replaing the existene of x0 underthe onditions of Theorem 1 by the existene of x0 ∈ X with x0 ≥ f(x0), andalso replaing ondition (2) byif a noninreasing sequene {xn} → x in X , then x ≤ xn, ∀n. (4)In [17℄, similar results are proved for noninreasing funtions f .As illustrated in [16℄, onditions (2), (3) and (4) are satis�ed for the spaes
(E1,≤), (E1,�), (C(J,E1),≤), and (C(J,E1),�) (J a real ompat interval).



128 J.J. Nieto, R. Rodríguez-LópezIn this referene, some results are given on the existene (or existene of aunique solution) for the fuzzy equation F (x) = x, where F : E1 −→ E1 or
F : C(J,E1) −→ C(J,E1), for J a real ompat interval, in presene of anupper (or lower) solution. In the ase of higher dimensional fuzzy sets (basespae En), the same results hold, onsidering the partial ordering �. Besides,the initial value problem for fuzzy di�erential equations is studied in En, n ≥ 1,deriving results on the existene of a (unique) solution. Moreover, the fuzzydi�erential equation with �nite delay

{
u′(t) = f(t, ut), t ∈ J = [0, T ],
u0 = ϕ ∈ C0,

(5)where f ∈ C(J ×C0, E
n), C0 = C([−τ, 0], En), and τ > 0, is also onsidered in[16℄ in relation with the method of upper and lower solutions.Another �xed point result whih allows to dedue interesting properties onthe existene of solutions to problem (1) is Tarski's Fixed Point Theorem [28℄, inrelation with the existene of �xed points for a nondereasing funtion F whihmaps a omplete lattie X into itself and suh that there exists x0 ∈ X with

F (x0) ≥ x0. In the referene [18℄, omplete latties are analyzed in the spaesof fuzzy intervals and fuzzy-interval-valued funtions and, hene, appliation ofTarski's Theorem allows to dedue the existene of solutions for fuzzy equationsand fuzzy di�erential and integral equations in E1 in presene of a lower oran upper solutions. The orresponding solutions are loalized in the regiondelimited by the upper or/and the lower solutions.On the other hand, onsider the boundary value problem
{
u′(t) = f(t, u(t)), t ∈ J = [0, T ],
λu(0) = u(T ),

(6)where T > 0, f : J × E1 −→ E1, and λ > 0. We remark that, for a funtionwhih is di�erentiable in the sense of Hukuhara, the diameter of the level setsis nondereasing in time, thus the study of periodiity presents more di�ultiesin the ontext of fuzzy di�erential equations.In [8℄, and onsidering the approah of Hukuhara-di�erentiability, someaspets of the boundary value problem (6) are onsidered.Besides, in [19℄, di�erent �xed point theorems are applied to the boundaryvalue problem (6) obtaining some results on the existene of solutions in preseneof upper and lower solutions. We reall, as an example, Theorem 4.6 [19℄.Theorem 2 (Theorem 4.6 [19℄) Let M > 0 and λ > eMT . Suppose that
f is ontinuous, the existene of a ≤-lower solution α to problem (6), and thatthe Hukuhara di�erenes f(t, x) −H Mx, exist for every (t, x) with x ≥ α(t).Also assume the validity of the following monotoniity property

f(t, x) −H Mx ≤ f(t, y) −H My, ∀t ∈ J, x, y ∈ E1, α(t) ≤ x ≤ y,and there exists k > 0 suh that
d∞(f(t, x) −H Mx, f(t, y) −H My) ≤ kd∞(x, y), ∀t ∈ J, x, y ∈ E1,



Upper and lower solutions method for fuzzy di�erential equations 129with x ≥ y ≥ α(t), where kT
ln λ−MT < 1. Then there exists a unique solution uto the BVP (6) with u ≥ α.Referenes [23, 24, 25℄ are devoted to the analysis of the existene of periodisolutions to fuzzy di�erential equations from the point of view of Hukuharadi�erentiability, solving the inonveniene of the inreasing harater of thediameter of the level sets of the solution by the introdution of impulses in theequation.In partiular, the problem studied in [25℄ is the following





u′(t) = f(t, u(t)), t ∈ [0, T ], t 6= tk, k = 1, 2, . . . , p,
u(t+k ) = Ik(u(tk)), k = 1, . . . , p,
u(0) = u(T ),

(7)where T > 0, J = [0, T ], 0 = t0 < t1 < · · · < tp < tp+1 = T , Jk = [tk−1, tk],for k = 1, . . . , p + 1, Ik : E1 −→ E1 ontinuous for k = 1, 2, . . . , p, and
f : J × E1 −→ E1 ontinuous in (J \ {t1, . . . , tp}) × E1 is suh that thereexist the limits limt→t−

k
f(t, x) = f(tk, x), limt→t+

k
f(t, x) for k = 1, . . . , p and

x ∈ E1.To omplete the study of the existene and the approximation of solutionsfor problem (7) through the monotone iterative tehnique, it is neessary tostudy the main properties of fuzzy sets in relation with
• Calulus of the exat solution for some fuzzy `linear' problems whih aretaken as auxiliary problems in the study of a nonlinear equation.
• Study of omparison results valid in the fuzzy ontext but extending well-known omparison results in the �eld of ordinary di�erential equations.
• Relative ompatness riteria in spaes of fuzzy funtions, interesting toapproximate solutions by iteration taking a lower solution or an uppersolution as the starting point.
• Study of the properties onerning the preservation of ordering inonvergene of sequenes of fuzzy sets and fuzzy funtions.With more detail, we speify the problems whih are addressed in referenes[23, 24, 25℄ in order to obtain sequenes of funtions whih approximate theextremal solutions to (7) in the funtional interval delimited by a pair of well-ordered lower and upper solutions.In [25℄, we alulate the exat solution for some auxiliary `linear' problemswith impulses from the point of view of Hukuhara di�erentiability, solutionswhih are given by an integral expression. Indeed, we analyze the solutions to





u′(t) +Mu(t) = σ(t), t ∈ (tk, tk+1), k = 0, 1, . . . , p,
u(t+k ) = ck, k = 1, . . . , p,
u(0) = u(T ),

(8)



130 J.J. Nieto, R. Rodríguez-Lópezwhere M > 0, T > 0, J = [0, T ], σ ∈ PC(J,E1), and ck ∈ E1, k = 1, 2, . . . , p.Taking into aount that in the fuzzy ase these problems are not equivalent,we also study




u′(t) = −Mu(t) + σ(t), t ∈ (tk, tk+1), k = 0, 1, . . . , p,
u(t+k ) = ck, k = 1, . . . , p,
u(0) = u(T ).

(9)The study of the solvability of these problems is losely onneted with theresults in [5, 20℄, where initial value problems for non impulsive fuzzy `linear'di�erential equations are onsidered.Referene [23℄ inludes omparison results whih are useful to omparethe solutions to di�erent initial value problems for fuzzy `linear' di�erentialequations by omparing the independent term and the initial ondition, in suh away that the `sign' of the independent term and the initial ondition determinesthe `sign' of the solution, understanding the `sign' as the relationship betweenthe spei� funtion and χ{0}, with respet to some partial ordering in E1.We onsider two funtions whih are, respetively, an upper and a lowersolution to the nonlinear problem (7). In order to obtain two sequenes whihapproximate the extremal solutions to (7) between the lower and the uppersolutions, we iterate starting, respetively, at the lower solution and the uppersolution. To follow this proedure, we need some results from [24℄ whihguarantee the following properties:
• If a sequene of funtions with values in E1 is pointwise onvergent andall the terms are bounded by a �xed funtion with respet to some partialordering, the same relation holds for the pointwise limit of the sequene.
• If a sequene of (E1) fuzzy-valued funtions de�ned on a real ompatinterval is monotone and it has a onvergent subsequene, then the wholesequene is onvergent to the same limit.Besides, also in [24℄, it is proved a relative ompatness riteria for subsetsof C(J,E1), based on the relative ompatness of the sets of the left- (resp.,right-) branhes of their elements.Applying the tools of [23, 24℄, the monotone method is �nally developedin [25℄ for the periodi boundary value problem (7), under the appropriatehypotheses on f , and funtions Ik.Referenes[1℄ S. Abbasbandy, J. J. Nieto, M. Alavi, Tuning of reahable set in onedimensional fuzzy di�erential inlusions. Chaos Solitons Fratals, 26 (2005),5, p. 1337�1341.[2℄ B. Bede, S.G. Gal, Generalizations of the di�erentiability of fuzzy-number-valued funtions with appliations to fuzzy di�erential equations. Fuzzy Setsand Systems, 151 (2005), p. 581�599.
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PATHWISE STATIONARY SOLUTIONS FOR STOCHASTICNEURAL NETWORKS WITH DELAYA. OGROWSKYInstitut für Mathematik, Universität PaderbornWarburger Straÿe 100, 33098 Paderborn, Germanyogrowsky�math.uni-paderborn.deAbstratIn this paper, a nontrivial stationary solution for a stohasti neuralnetwork with delay is studied. The analysis is done in the ontext of thetheory of random dynamial system and the idea of M-matries.Key words: stohasti neural networks, delay equations, random dynamialsystems, M-matries, random �xed points.AMS subjet lassi�ations: 34F05, 37L55, 92B20.1 IntrodutionThe analysis of neural networks is an interesting and very importantmathematial �eld due to its wide range of appliations. They inlude, forexample, the onstrution of arti�ial intelligene, models for neurobiology andimage reognition. Many of those appliations an be desribed by a neuralnetwork that was introdued in [4℄ by Miheal A. Cohen and Stephen Grossberg.It is referred to as Cohen-Grossberg neural network. In this artile we onsiderthe neural network with delay of the form

dxi

dt
(t) = −cixi(t) +

n∑

j=1

aijfj(xj(t)) +

n∑

j=1

bijgj(x
t
j) + Ii(t) (1)for i = 1, . . . , n and t ≥ 0 (f. [7℄) with initial ondition xi(t) = ξi(t) for

t ∈ [−h, 0] with h > 0. The whole mathematial bakground will be given inthe next setion. As desribed in [7℄, n denotes the number of neurons in thenetwork and xi(t) the state of the ith neuron at time t. The funtions fj and
gj are alled ativation funtions of the jth neuron. Ii(t) is the external biason the ith neuron at time t. aij and bij represent the onnetion weight of the
jth neuron on the ith neuron and ci denotes the rate with whih the ith neuronI thank the referee for very valuable omments whih helped me to improve this paper.133



134 A. Ogrowskywill reset its potential to the resting state in isolation when disonneted fromthe network and external inputs.In this artile we are interested in equilibrium states of suh a network.These states play an important role in the behavior of neural networks whihan be represented learly by using the example of image reognition: Somekind of input stimulates neurons that pass on the stimulations until the neuralnetwork evaluates to a stable state (the output) that should represent the input.In our ase the input is, for instane, a blurry piture whih is transformed toits sharp original by the network. Thereby the original piture represents theequilibrium state.One an imagine that the forwarding of the stimulations an be randomlyin�uened. That is the reason why we onsider a stohasti neural network, i.e.we replae the external bias by white noise (f. [10℄), so that (1) beomes
dxi(t) =


−cixi(t) +

n∑

j=1

aijfj(xj(t)) +

n∑

j=1

bijgj(x
t
j)


 dt+ dWi(t) (2)whereWi is a two-sided Wiener proess for i = 1, . . . , n de�ned on a probabilityspae that will be introdued in setion 2.3. Our intention is to investigate thedynamis of suh a system with respet to the theory of random dynamialsystems in whih equilibrium states are represented by so alled random �xedpoints. The main goal of this artile is to �nd suh a �xed point in the pathwisesense rather than in the mean square sense (f. [10℄).When dealing with delay di�erential equations one often assumes a onditionto estimate the delay by a term whih is independent of that delay (f. [3, p.275℄ and the itations therein). We try to overome suh an assumption byusing the onept of M -matries and a general Gronwall inequality whih isbased on the so alled Halanay inequality (f. [5, p. 378℄).2 Preliminaries2.1 Random dynamial systemsIn this paper we need some basi de�nitions onerning the theory of randomdynamial systems (RDS) suh as, for example, the onept of temperednessand random �xed points. But due to the interest of brevity we refer to [3, pp.282�283℄ where all of these de�nitions have been introdued.2.2 M -matriesWe denote by Zn×n the lass of Z-matries whih onsists of matries withnonpositive o�-diagonal elements. In partiular, we are interested in nonsingular

M -matries whih are elements of Zn×n. As desribed in [2, p. 132℄,M -matriesoften our in physial and biologial siene and, for example, play a role in�nite di�erene methods for PDEs and in Markov proesses.



Pathwise stationary solutions for stohasti neural networks with delay 135For onveniene we introdue the notation |M | = (‖mij‖R
)i,j for a matrix

M = (mij)i,j with real-valued entries where ‖·‖
R
denotes the absolute value ofa real number. Furthermore, we interpret the notation A ≤ B resp. A < Bfor two matries A = (aij)i,j and B = (bij)i,j omponentwise as aij ≤ bij resp.

aij < bij for all i, j.De�nition 1 A ∈ Zn×n is alled a nonsingular M -matrix if there exists avetor x > 0 suh that Ax > 0.The onept of M -matries will be used below to prove a generalized Gronwalllemma whih is the main ingredient to show the existene of a stationarysolution to the neural network.Remark 1 There are a lot of equivalent de�nitions for matries to be a M -matrix. 50 of them an be found in [2, pp. 134℄.2.3 Stohasti neural networkWe are given a probability spae (Ω,F ,P). The R
n-valued two-sided Wienerproess W = (W1, . . . ,Wn)⊤ generates a anonial probability spae where Ωis the spae C0(R,R

n), whih onsists of ontinuous funtions that are zero atzero, F the assoiated Borel-σ-algebra with respet to the ompat open topolgyof the Fréhet spae Ω and P the Wiener measure. The metri dynamialsystem (f. [3, p. 273℄) is de�ned by the so alled Wiener shift operators
θt : Ω → Ω, ω 7→ ω(·+ t)−ω(t) for t ∈ R, ω ∈ Ω. Notie that P is ergodi w.r.t.
θ. What we have introdued is alled the Wiener spae.We want to denote the neural network (2) in a more omprehensive vetorform. We denote by C([−h, 0]; Rn) the spae of ontinuous funtions from
[−h, 0] into R

n equipped with the supremum norm. For j = 1, . . . , n and t ≥ 0the funtion xt
j ∈ C([−h, 0]; R) is de�ned by xt

j(s) = xj(t + s) for s ∈ [−h, 0].By using the notations
• x(t) = (x1(t), . . . , xn(t))⊤, ξ(t) = (ξ1(t), . . . , ξn(t))⊤,
W (t) = (W1(t), . . . ,Wn(t))⊤

• A = (aij)i,j=1,...,n, B = (bij)i,j=1,...,n, C = diag(c1, . . . , cn)

• f(x(t)) = (f1(x1(t)), . . . , fn(xn(t)))⊤, g(xt) = (g1(x
t
1), . . . , gn(xt

n))⊤we an rewrite (2) into the vetor form
{

dx(t) = [−Cx(t) +Af(x(t)) +Bg(xt)] dt+ dW (t) , t ≥ 0

x(t) = ξ(t) , t ∈ [−h, 0].
(3)We assume ci to be a positive onstant and aij , bij to be nonnegative onstantsfor i, j = 1, . . . , n. In addition, we suppose the operators f : R

n → R
n and

g : C([−h, 0]; Rn) → R
n to satisfy the Lipshitz ondition, i.e.

|f(u) − f(v)| ≤ Lf |u− v| for u, v ∈ R
n,

|g(x) − g(y)| ≤ Lg|x− y|C([−h,0];Rn) for x, y ∈ C([−h, 0]; Rn)



136 A. Ogrowskywhere
|x|C([−h,0];Rn) := sup

−h≤s≤0
|x(s)| =

(
sup

−h≤s≤0
‖x1(s)‖R

, . . . , sup
−h≤s≤0

‖xn(s)‖
R

)⊤for x ∈ C([−h, 0]; Rn).For a pathwise investigation of the neural network we transform thestohasti di�erential equation (SDE) into a random di�erential equation(RDE). Using the stationary solution (ω, t) 7→ z∗(θtω) (known as the Ornstein-Uhlenbek proess or OU proess) of the SDE dz(t) = −Cz(t) dt + dW (t) wean rewrite (3) into the RDE
{
u̇(t) = −Cu(t) +Af(u(t) + z∗(θtω)) +Bg(ut + z∗(θ·+tω)) , t ≥ 0

u(t) = ξ(t) − z∗(θtω) =: µ(t) , t ∈ [−h, 0]
(4)with u(t) := x(t) − z∗(θtω). We de�ne

F : C([−h, 0]; Rn) → R
n, xt 7→ Af(xt(0) + z∗(θtω)) + Bg(xt + z∗(θ·+tω)).As a result of

|F (xt) − F (yt)| ≤ ALf |x(t) − y(t)| +BLg|xt − yt|C([−h,0];Rn)

≤ ALf sup
−h≤s≤0

|x(t+ s) − y(t+ s)| +BLg|xt − yt|C([−h,0];Rn)

= (ALf +BLg)|xt − yt|C([−h,0];Rn)

F is Lipshitz ontinuous. In addition, µ → ϕ(t, ω, µ) is ontinuous (f. (12)).Hene there exists a unique solution to (4) whih generates an RDS ϕ given by
ϕ : R

+
0 × Ω × C([−h, 0]; Rn) → C([−h, 0]; Rn), (t, ω, µ) 7→ ut(·, ω, µ) (5)for t ≥ 0, ω ∈ Ω and µ ∈ C([−h, 0]; Rn) (f. [3, p. 286℄).3 Stationary solutionGronwall's lemma resp. inequality plays an important role in many topisstudying the qualitative behavior of di�erential equations. We will use a speialkind of suh an inequality whih we all generalized Gronwall inequality. Itis mainly based on the Halanay inequality introdued in [5, p. 378℄. Ageneralization an already be found in [9, p. 111℄. However, the inequalityto the generalization presented below is extended by a funtion added to theright handside whih is why refer to it as the strong version. The generalizationin [9℄ will be alled the weak version.We reall that the inequalities are to be understood in the omponentwisesense. D+ denotes the usual Dini derivative and E the n× n identity matrix.



Pathwise stationary solutions for stohasti neural networks with delay 137Lemma 1 (Generalized Gronwall lemma) Let P = (pij) with pij ≥ 0 for
i 6= j and Q = (qij) ≥ 0 be two n × n matries suh that −(P + Q) is anonsingular M -matrix. Consider T > 0 and assume that u ∈ C([0, T ]; Rn)satis�es the di�erential inequality

D+u(t) ≤ Pu(t) +Q sup
−h≤s≤0

u(t+ s) + diag(K1, . . . ,Kn)v(t), t ≥ 0 (6)where v is a nonnegative funtion, the initial ondition µ ∈ C([−h, 0]; Rn) ful�lls
µ(s) ≤ Ke−λs for s ∈ [−h, 0]. (7)

K = (K1,K2, . . . ,Kn)⊤ > 0 and λ > 0 are determined by
(P +Qeλh + λE)K < 0.Then we have

u(t) ≤ Ke−λt + diag(K1, . . . ,Kn)

t∫

0

e−λ(t−r)v(r) dr for t ≥ 0. (8)Proof . Sine −(P + Q) is a nonsingular M -matrix there exists a onstantvetor K = (K1,K2, . . . ,Kn)⊤ > 0 suh that (P + Q)K < 0. Hene, byontinuity, there is a onstant λ > 0 with (λE + P +Qeλh)K < 0.Next we want to show that for any t ≥ 0 it holds
ui(t) ≤ Kie

−λt +Ki

t∫

0

e−λ(t−r)vi(r) dr =: Φi(t) for i = 1, . . . , n. (9)Assume that (9) is false. Then there exist t∗ > 0 and m ∈ {1, . . . , n} suhthat um(t∗) > Φm(t∗). Beause of (7), the ontinuity of u and the nonnegativityof v there also exists a t0 ≥ 0 suh that um(t0) = Φm(t0) and
D+um(t0) ≥ D+Φm(t0). (10)In addition, we an hoose t0 suh that for all i ∈ {1, . . . , n} it holds ui(t) ≤ Φi(t)for t ∈ [−h, t0]. This is justi�ed by (7) one again. Note that the last inequalityimplies sup−h≤s≤0 ui(t0 + s) ≤ sup−h≤s≤0 Φi(t0 + s) for i ∈ {1, . . . , n}. Butthen we also have

D+um(t0)

≤
n∑

i=1

{
pmiui(t0) + qmi sup

−h≤s≤0
ui(t0 + s)

}
+Kmvm(t0)

≤
n∑

i=1



pmiKie

−λt0 + pmiKie
−λt0

t0∫

0

eλrvi(r) dr + qmiKi sup
−h≤s≤0

[
e−λ(t0+s)

]

+qmiKi sup
−h≤s≤0


e−λ(t0+s)

t0+s∫

0

eλrvi(r) dr







+Kmvm(t0)
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≤

n∑

i=1




pmiKie
−λt0 + pmiKie

−λt0

t0∫

0

eλrvi(r) dr + qmiKie
−λ(t0−h)

+qmiKie
−λ(t0−h)

t0∫

0

eλrvi(r) dr



 +Kmvm(t0)

=
n∑

i=1




(
pmi + qmie

λh
)
Kie

−λt0 +
(
pmi + qmie

λh
)
Kie

−λt0

t0∫

0

eλrvi(r) dr





+Kmvm(t0)

< (−λ)Kme−λt0 + (−λ)Kme−λt0

t0∫

0

eλrvm(r) dr +Kmvm(t0)

= −λKm


e−λt0 + e−λt0

t0∫

0

eλrvm(r) dr


 +Kmvm(t0)

= −λΦm(t0) +Kmvm(t0)

= D+Φm(t0)whih ontradits (10). Hene (9) is true and the lemma is proved. �Remark 2 If we replae v(t) in (6) by diag(K−1
1 , . . . ,K−1

n )v(t) the diagonalmatrix in (8) an be taken as the identity matrix. Hene the lemma above isstill valid if we think of the term diag(K1, . . . ,Kn) in (6) and (8) to be theidentity matrix.Next, we prove that two solutions to (4) approah eah other exponentiallyfast as the time tends to in�nity. We denote
‖x‖ := max

i=1,...,n

(
sup

−h≤s≤0
‖xi(s)‖R

)
.Note that ‖·‖ is equivalent to the norm in C([−h, 0]; Rn) given by ‖·‖C([−h,0];Rn)

:= sup−h≤s≤0 ‖·(s)‖Rn .Lemma 2 Let ũ and û be two solutions to (4) with initial onditions µ̃ resp.
µ̂ and assume that −(Lf |A| + Lg|B| − C) is a nonsingular M -matrix. Then itholds

|ũ(t) − û(t)| ≤ c‖µ̃− µ̂‖e−λtKfor t ≥ −h where  is a onstant and K and λ are given by Lemma 1.Proof . We denote by △u(t) and △µ(t) the di�erene between the twosolutions and initial onditions, respetively. We need to show the assumptions(6) and (7) to apply the generalized Gronwall Lemma.



Pathwise stationary solutions for stohasti neural networks with delay 139Step 1: Let t ≥ 0 and sgn denote the usual signum funtion. For △u(t) 6= 0 itholds
D+|△u(t)| = sgn(△u(t))d△u

dt
(t)

≤ −C|△u(t)| + |A||f(ũ(t) + z∗(θtω)) − f(û(t) + z∗(θtω))|
+ |B||g(ũt + z∗(θ·+tω)) − g(ût + z∗(θ·+tω))|

≤
(
Lf |A| − C

)
|△u(t)| + Lg|B| sup

−h≤s≤0
|△u(t+ s)|and for △u(t) = 0 we derive (f. [6, p. 87℄)

D+|△u(t)| ≤ Lg|B| sup
−h≤s≤0

|△u(t+ s)|based on the ontinuous trajetories of the OU proess (f. [3, p. 285℄). Heneondition (6) is ful�lled.Step 2: For t ∈ [−h, 0] we have
|△u(t)| ≤ max

i=1,...,n

(
sup

−h≤s≤0
‖△µi(s)‖R

)
1 ≤ c‖△µ‖e−λtK (11)where 1 := (1, . . . , 1)⊤ and c := 1

mini=1,...,n Ki
> 0. Hene assumption (7) issatis�ed whereby K is replaed by c‖△µ‖K.Therefore we an apply Lemma 1 (in its weak sense) and reeive |△u(t)| ≤

c‖△µ‖e−λtK for t ≥ 0 whih is also true for t ≥ −h sine (11) holds. �In partiular, we have ‖△ui(t)‖R
≤ c‖△µ‖e−λtKi for i ∈ {1, 2, . . . , n} and

t ≥ −h. Hene sup−h≤s≤0 ‖△ui(t+ s)‖
R
≤ c‖△µ‖e−λ(t−h)Ki for t ≥ 0. Takingthe maximum on both hand sides and de�ning C := ceλh maxi=1,...,nKi yield

‖△ut‖ ≤ C‖△µ‖e−λt. Due to the de�nition of the RDS given in (5) we get
‖△ϕ(t, ω, µ)‖ ≤ C‖△µ‖e−λt. (12)Now we an show the existene of a nontrivial stationary solution to the neuralnetwork.Theorem 3 Assume that −(Lf |A|+Lg|B| −C) is a nonsingular M -matrix.Then the neural network (4) has a unique exponentially attrating random �xedpoint u∗(ω) where ‖u∗(ω)‖ is tempered.Proof. The proof follows the method desribed by Shmalfuss (f. [8, pp. 95�96℄). We do not give the full details here but note that the existene of a Cauhysequene is based on (12) and similar alulations used in the proof of Lemma 2.We emphasize that for these alulations, however, we need the strong versionof the generalized Gronwall lemma. In addition, the temperedness of the OUproess w.r.t. C([−h, 0]; R) is neessary. It bases upon the temperedness of the



140 A. OgrowskyOU proess w.r.t. to R (f. [3, pp. 284�285℄) and is therefore shown by
lim

t→±∞

log+ ‖z∗i (θtω)‖C([−h,0],R)

‖t‖
R

= lim
t→±∞

log+ sup−h≤s≤0 ‖z∗i (θs+tω)‖
R

‖t‖
R

= lim
t→±∞

log+ ‖z∗i (θs0(t)+tω)‖
R

‖s0(t) + t‖
R︸ ︷︷ ︸

→0

‖s0(t) + t‖
R

‖t‖
R︸ ︷︷ ︸

→1

= 0where i ∈ {1, . . . , n} and s0(t) ∈ [−h, 0] is de�ned by sup−h≤s≤0 ‖z∗i (θs+tω)‖
R

=
‖z∗i (θs0(t)+tω)‖

R
. �Remark 3 Due to the stationarity of the OU proess a similar result is validfor the SDE (3). This an be shown by transforming the solution to (4) bak.Referenes[1℄ Arnold, Ludwig, Random dynamial systems. Springer-Verlag, Berlin 1998.[2℄ Berman, Abraham and Plemmons, Robert J., Nonnegative matries in themathematial sienes. Revised reprint of the 1979 original. Classis inApplied Mathematis, 9. Soiety for Industrial and Applied Mathematis(SIAM), Philadelphia, PA, 1994.[3℄ Caraballo, T. and Garrido-Atienza, M. J. and Shmalfuss, B., Existene ofexponentially attrating stationary solutions for delay evolution equations.Disrete Contin. Dyn. Syst., 18 (2007), 2-3, pp. 271�293.[4℄ Cohen, Mihael A. and Grossberg, Stephen, Absolute stability of globalpattern formation and parallel memory storage by ompetitive neuralnetworks. IEEE Trans. Systems Man Cybernet., 13 (1983), 5, pp. 815�826.[5℄ Halanay, A., Di�erential equations: Stability, osillations, time lags.Aademi Press, New York 1966.[6℄ Khalil, Hassan K., Nonlinear systems, 2nd edition. Mamillan PublishingCompany, New York 1996.[7℄ Liang, Jinling and Cao, Jinde, Boundedness and stability for reurrent neuralnetworks with variable oe�ients and time-varying delays. Phys. Lett. A,318 (2003), 1-2, pp. 53�64.[8℄ Shmalfuss, Björn, A random �xed point theorem and the random graphtransformation. J. Math. Anal. Appl., 225 (1998), 1, pp. 91�113.[9℄ Xu, Daoyi and Yang, Zhihun, Impulsive delay di�erential inequality andstability of neural networks. J. Math. Anal. Appl., 305 (2005), 1, pp. 107�120.[10℄ Zhou, Qinghua and Wan, Li, Exponential stability of stohasti delayedHop�eld neural networks. Appl. Math. Comput., 199 (2008), 1, pp. 84�89.
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142 W.M. Oliva, G. Terra2 Notations and De�nitionsIn this setion we �x some notation for jet bundles and we de�ne the variationalbiomplex on the bundle of in�nite jets of setions of a �bration. Wepartiularize the de�nitions for a �bration π : E → R over R, where E is asmooth n-dimensional manifold. The reader is referred to [9℄ and [1℄ for moredetails on the bundle of in�nite jets and the variational biomplex.For all k ∈ N, πk : J
kπ → R denotes the bundle of k-jets of setions of πand, for 0 6 l < k, πk,l : J

kπ → J
lπ denotes the natural projetions (where

J
0π

.
= E). We all π1 the soure projetion and π1,0 the target projetion ofthe 1st jet bundle J

1π. Let (t, uα)16α6n be oordinates on an open set U ⊂ Eadapted to the �bration E → R. This oordinate system indue oordinates
(t, uα

(i))16α6n,06i6k on Uk .
= π−1

k,0U ⊂ J
kπ. We use the notation u̇α .

= uα
(1) and

üα .
= uα

(2), so that (t, uα, u̇α)16α6n and (t, uα, u̇α, üα)16α6n are oordinates on
U1 ⊂ J

1π and U2 ⊂ J
2π, respetively.Let s : I ⊂ R → E be a smooth setion of π. Given t ∈ I, we denote by j∞t sthe equivalene lass of all setions of π de�ned on a neighborhood of t whosederivatives of all orders at t oinide with that of s. Suh an equivalene lass isalled an in�nite order jet. We denote by J

∞π the Fréhet manifold of in�niteorder jets of setions of π; it is a smooth manifold modelled on the Fréhetspae R
∞. We denote by (∀ k ∈ Z+) π∞,k : J

∞π → J
kπ and π∞ : J

∞π → R thenatural projetions. The hart (t, uα)16α6n on U ⊂ E adapted to the �bration
E → R indues a hart (t, uα

(i))16α6n,06i6∞ on U∞ .
= π−1

∞,0U ⊂ J
∞π.We say that a smooth funtion on J

∞π has order k ∈ Z+ if it is the pullbakby π∞,k of a smooth funtion on J
kπ. We say that a smooth funtion on J

∞πis of �nite order if, for some k ∈ Z+, it has order k. Di�erential forms on
J
∞π of �nite order are similarly de�ned. In this paper, all smooth funtions ordi�erential forms on J

∞π are assumed to be of �nite order.There exists a natural bigrading on the R-vetor spae of di�erential formson J
∞π:

Ω∗(J
∞π) = ⊕

06i61, 06j6∞
Ωi,j(J

∞π).A di�erential form belongs to Ωi,j(J
∞π) if, loally, on the harts desribedabove, it is a sum of terms of the form f dti ∧ δuα1

(k1)
∧ · · · ∧ δuαj

(kj)
, where f isa smooth funtion on J

∞π and δuα
(j)

.
= duα

(j) − uα
(j+1)dt. Suh a form is saidto be of type (i, j), or i-horizontal and j-vertial. Given ω ∈ Ωi,j(J

∞π), itsexterior derivative dω belongs to Ωi+1,j(J
∞π)⊕Ωi,j+1(J

∞π); we denote by dhωits projetion on the �rst fator and by dvω its projetion on the seond one.We extend dh and dv to Ω∗(J∞π) by linearity; dh is alled horizontal derivativeand dv is alled vertial derivative. They are both anti-derivations on Ω∗(J∞π)of degree +1 and satisfy dh
2 = 0, dv

2 = 0, dhdv = −dvdh. Therefore, for eah�xed i we obtain a ohain omplex (Ωi,j(J
∞π), dv

)
j>0

� the olumns of theso-alled variational biomplex � and for eah �xed j we obtain a ohainomplex (Ωi,j(J
∞π), dh

)
i>0

� the lines of the variational biomplex. Thehorizontal and vertial derivatives an be easily omputed in oordinates: if
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f = f(t, uα, uα

(1), . . . , u
α
(k)) is a smooth funtion on J

∞π, we have:
dhf = Dtf dt

dvf =

n∑

α=1

k∑

j=0

∂f

∂uα
(j)

δuα
(j),where Dtf = ∂f

∂t +
∑n

α=1

∑k
j=0

∂f
∂uα

(j)
uα

(j+1) is the total derivative of f ;moreover, dhdt = 0 = dvdt and dhδu
α
(k) = dt ∧ δuα

(k), dvδu
α
(k) = 0.The di�erential forms in Ω1,0(J

∞π) are alled Lagrangian forms. Inoordinates, a Lagrangian form may be written as L dt, where L is a smoothfuntion on J
∞π; the Lagrangian is said to be of order k if L is of order k,i.e. if L = L(t, uα, uα

(1), . . . , u
α
(k)). Suh a Lagrangian indues a funtionalon ompatly supported smooth setions of π: s 7→

∫
R
(j∞ s)∗L dt. A smoothsetion s of π is said to be an extremal of the funtional indued by Ldt if, forany ompatly supported variation sτ of s, we have d

dτ |τ=0

∫
R
(j∞ sτ )∗L dt = 0.A neessary and su�ient ondition for s to be an extremal of the funtionalindued by Ldt is that the Euler-Lagrange form ΩL of L be null along j∞ s.The Euler-Lagrange form ΩL is a form in Ω1,1(J

∞π) whih, in oordinates, iswritten as:
ΩL =

n∑

α=1

Eα(L)δuα ∧ dt, (1)where Eα(L) =
∑k

i=0(−Dt)
i ∂L
∂uα

(i)
for a Lagrangian of order k.For s > 1, we all the quotient Fs(J∞π)

.
= Ω1,s(J

∞π)/dhΩ0,s(J
∞π)spae of type s funtional forms. It may be identi�ed with the subspae of

Ω1,s(J
∞π) whih is the image of the interior Euler operator I : Ω1,s(J

∞π) →
Ω1,s(J

∞π). In oordinates, we have I(ω) = 1
s

∑n
α=1 δu

α ∧ Fα(ω), where
Fα(ω)

.
=
∑k

i=0(−Dt)
i[δuα

(i)yω] if ω has order k. For s = 1, a di�erentialform in Ω1,1(J
∞π) is a type 1 funtional form, also alled a soure form, if,and only if, it is loally of the form ∑n

α=1 Pα dt ∧ δuα, where the Pα's aresmooth funtions on J
∞π. Thus, from (1), the Euler-Lagrange form assoiatedto a Lagrangian is a soure form, i.e. it belongs to F1(J∞π). We think of asoure form ω ∈ F1(J∞π) of order k as an intrinsi de�nition of a system of ndi�erential equations of order k; its solutions are the setions s of π suh that

ω vanishes along j∞ s.The spaes Fs are part of a ohain omplex, the so-alled Euler-Lagrangeomplex of the �bration π : E → R:
0 −→ R −→ Ω0,0

dh−→ Ω1,0
E−→ F1 δv−→ F2 δv−→ · · · (2)where E is the Euler operator Ldt 7→ ΩL given by (1) and δv : F i → F i+1 isthe vertial derivative indued on funtional forms, given by δv .

= I ◦ dv.



144 W.M. Oliva, G. Terra3 Vakonomi MehanisWe denote by ξ : R × M → R the trivial bundle and ξ1 : J
1ξ → R its �rstjet bundle, whih is identi�ed with R × TM, where τM : TM → M denotesthe tangent bundle of M. We onsider a smooth time-dependent Lagrangian

L : J
1ξ → R and a smooth vetor sub-bundle Π : D → R × M of the targetprojetion ξ1,0 : R × TM → R × M (whih stands for the reonomi linearonstraints) and we denote its annihilator in R × T

∗
M by Π∗ : D⊥ → R × M.We denote by π : D⊥ → R the natural projetion. We all (M,D ,L) a (linearly)onstrained mehanial system. We say that a smooth setion γ : I ⊂ R → R×Mof ξ is ompatible with D or horizontal with respet to D if its prolongation j1 γlies in D . There are two natural approahes to formulate equations of motion foronstrained mehanial systems yielding solutions whih are ompatible with D :(1)nonholonomi mehanis (see [7℄, [6℄, [10℄ and referenes therein), known as�mehanis of the straightest paths�, based on d'Alembert-Chetaev's priniple;(2) Vakonomi Mehanis(see [2℄, [7℄, [6℄, [11℄ and referenes therein), knownas �mehanis of the shortest paths�, based on the Hamilton's priniple of thestationary ation. A partiular ase of the latter is the so-alled sub-Riemanniangeometry.We shall brie�y reall how the equations of motion in Vakonomi Mehanisare formulated and we show how these equations may be obtained as the Euler-Lagrange equations of a modi�ed Lagrangian L de�ned on J

1π, the total spaeof the �rst jet bundle of π : D⊥ → R.The ation funtional indued by L on ompatly supported setions γ :
I ⊂ R → R × M of ξ, I an open interval, is de�ned by γ 7→

∫
I L ◦ j1 γ. Wesay that a setion γ : I ⊂ R → R × M of π is a vakonomi trajetory of

(M,D ,L) if it is a ritial point of the ation funtional on ompatly supportedvariations of γ ompatible with D . By a ompatly supported variation of γwe mean a smooth map Γ : (−δ, δ) × I → R × M suh that, for all s ∈ (−δ, δ),
Γs

.
= Γ(s, ·) : I → R×M is a setion of ξ, Γ0 = γ and there exists a ompat set

K ⊂ I suh that for all s ∈ (−δ, δ) and all t outside K, γs(t) = γ(t); we say thatsuh a variation is ompatible with D if, for all s ∈ (−δ, δ), Γs is ompatible with
D . There are two types of vakonomi trajetories (see [6℄, [11℄): the normal,whih are assoiated to a ertain system of Euler-Lagrange equations, and theabnormal, whih orrespond to the ritial points of the so-alled endpoint map.We propose the following haraterization of the normal vakonomi trajetories:Proposition 1 Let L : J

1π → R be de�ned by:
j1t Θ 7→ L(j1t γ) + 〈Θ(t), j1t γ〉, (3)where γ .

= Π∗◦Θ and 〈·, ·〉 is the anonial pairing between R×TM and R×T
∗
M.Then the normal vakonomi trajetories are projetions on R×M of the solutionsof the Euler-Lagrange equations of L .De�nition 1 We say that L is D-regular if FL|D : D → D∗ is a loaldi�eomorphism (where FL denotes the �ber derivative of L, i.e. ∀ (t, vq) ∈

R × TM,FL(t, vq)
.
= D(L|R×TqM)(t, vq) ∈ R × T

∗
qM).



An Inverse Problem on Vakonomi Mehanis 145De�nition 2 The mixed bundle is the Whitney sum D ⊕R×M D⊥. We de�ne
F : J

1ξ⊕R×M D⊥ → R×T
∗
M by (v,Θ)(t,q) 7→ FL(v)+Θ and F .

= F |D ⊕R×M D⊥ .It is an immediate onsequene of the above de�nitions that L is D-regularif, and only if, F is a loal di�eomorphism. Let θ be the anonial ontat formon R × T
∗
M, θL .

= F
∗
θ, ωL

.
= −dθL + dt ∧ dH, where H : D ⊕R×M D⊥ → R isgiven by (v,Θ)(t,q) 7→ L(v) − FL(v) · v. Then, if L is D-regular, (ωL, dt) is aosympleti struture on D ⊕R×M D⊥, where dt is the anonial volume formon R. Moreover, we have the following:Theorem 2 If L is D-regular, the normal vakonomi trajetories are in1-1 orrespondene with the integral urves of the Reeb vetor �eld of theosympleti struture (ωL, dt).Remark 1 This is a generalization of the well known fat that, in theautonomous ase and under the same regularity hypothesis, the normalvakonomi trajetories are integral urves of a Hamiltonian vetor �eld (see[6℄, [11℄).4 The Inverse ProblemLet π : D⊥ → R be as in the previous setion and (t, qi)16i6n be oordinateson an open set R × U in R × M, where n = dimM. Let (θα)16α6n−k be abasis of D⊥|R×U , where k = rk D . Let (t, qi, λα) be the indued oordinates on

D⊥|R×U . This oordinate system indues, as desribed in setion 2, oordinatesin J
kπ, 1 6 k 6 ∞.We onsider a soure form Ω on F1(J∞π) of order 2 whih, on the oordinatesabove, is of the form:

∑

i

Pi(t, q
i, q̇i, q̈i, λα, λ̇α)δqi ∧ dt+

∑

i,α

θα
i q̇

iδλα ∧ dt, (4)where θα
i
.
= 〈θα, ∂

∂qi 〉.De�nition 3 With the notation above, we all Ω a D-soure form. The integralurves of Ω are the setions Θ of π suh that Ω vanishes along j∞ Θ.Proposition 3 The de�nition above is intrinsi, i.e. independent of theoordinate system.Proof . Let (t, qi)16i6n be another oordinate system on R×U ⊂ R×M; weassume these oordinate systems to be related by (t, qi) 7→
(
t, qi(q1, . . . , qn)

).Let (θ
α
)16α6n−k be another basis of D⊥|R×U ; we assume θα

=
∑

β A
α
βθ

β , where
Aα

β = Aα
β (t, q) is a smooth funtion on R ×U for 1 6 α, β 6 n− k. The matrix

A = (Aα
β ) is, then, invertible. Let (t, qi, λα) be the indued oordinates on

D⊥|R×U . This oordinate system indues oordinates in J
kπ, 1 6 k 6 ∞. Adiret omputation then shows that, in this new oordinate system, Ω given by



146 W.M. Oliva, G. Terra(4) transforms into∑i P i(t, q
i, q̇

i
, q̈

i
, λα, λ̇α)δqi ∧dt+

∑
i,α θ

α

i q̇
i
δλα ∧dt, where

θ
α

i
.
= 〈θα

, ∂
∂qi 〉 and:

P i(t, q
i, q̇

i
, q̈

i
, λα, λ̇α) =

∑

j

Pj
∂qj

∂qi
+
∑

j,α,β,γ

q̇
j
θ

β

j (A−1)α
β

∂Aγ
α

∂qi
λγ (5)

�Note that, if Θ is an integral urve of Ω, then the projetion of Θ on
R × M is ompatible with D and, loally, Θ : t 7→

(
t, qi(t), λα(t)

) in the aboveoordinates is a solution of the system of mixed �rst- and seond-order equations
Pi(t, q

i, q̇i, q̈i, λα, λ̇α) = 0.We now onsider the following problem: to �nd neessary and su�ientonditions for a given D-soure form Ω to be the Euler-Lagrange form of aLagrangian of the form (3). If that is the ase, the integral urves of Ω are thesolutions of the Vakonomi equations of the Lagrangian L.De�nition 4 We say that a D-soure form Ω is 2-1-a�ne if, written inoordinates as (4), for 1 6 i 6 n: (i) the funtions Pi are a�ne in the variables
q̈k, 1 6 k 6 n and λ̇α, 1 6 α 6 n− k; (ii) ∂Pi

∂q̈k is a funtion of (t, q, q̇) and ∂Pi

∂λ̇kis a funtion of (t, q).It follows from (5) that the above de�nition does not depend on theoordinate system.De�nition 5 Let Ω be a D-soure form. We say that Ω is a loally variational
D-soure form if, loally, it is the Euler-Lagrange form of a Lagrangian of theform (3). We say that Ω is globally variational if the latter ondition holdsglobally on J

∞π.Our main results are stated in the following theorems: in the �rst one wedesribe the D-soure forms whih are loally variational; in the seond one weshow that the topologial obstrution for a loally variational D-soure form tobe globally variational lies in H
2(M).Theorem 4 Let Ω be a D-soure form. Then Ω is loally variational if, andonly if, Ω is 2-1-a�ne and δvΩ = 0, where δv is de�ned in (2). In oordinates,if Ω is given by (4), the latter ondition reads:

∂Pj

∂qi
=
∂Pi

∂qj
− Dt

∂Pi

∂q̇j
+ D2

t

∂Pi

∂q̈j

−∂Pj

∂q̇i
=
∂Pi

∂q̇j
− 2Dt

∂Pi

∂q̈j

∂Pj

∂q̈i
=
∂Pi

∂q̈j

∑

j

∂θα
j

∂qi
q̇j =

∂Pi

∂λα
− Dt

∂Pi

∂λ̇α

−θα
i =

∂Pi

∂λ̇α

(6)



An Inverse Problem on Vakonomi Mehanis 147Theorem 5 If H
2(M) = 0, every loally variational D-soure form is globallyvariational. On the other hand, if H

2(M) 6= 0, there exist loally variational
D-soure forms whih are not globally variational.Referenes[1℄ I. M. Anderson, The Variational Biomplex, To Appear.[2℄ V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Dynamial SystemsIII, vol. 3 of Enylopaedia of Mathematial Sienes, Springer-Verlag, NewYork, 1988, h. Mathematial Aspets of Classial and Celestial Mehanis,pp. 1�286.[3℄ J. Douglas, Solution of the inverse problem of the alulus of variations,Pro. Nat. Aad. Si. U.S.A., 25 (1939), pp. 631�637.[4℄ , Solution of the inverse problem of the alulus of variations, Trans.Amer. Math. So., 50 (1941), pp. 71�128.[5℄ H. Helmholtz, Uber der physikalishe bedeutung des prinips derkleinsten wirkung, J. Reine Angew. Math., 100 (1887), pp. 137�166.[6℄ I. Kupka and W. M. Oliva, The non-holonomi mehanis, Journal ofDi�erential Equations, 169 (2001), pp. 169�189.[7℄ W. M. Oliva, Geometri Mehanis, vol. 1798 of Leture Notes inMathematis, Springer-Verlag, 2002.[8℄ W. M. Oliva and G. Terra, An inverse problem on vakonomimehanis, Preprint to be Submitted.[9℄ D. J. Saunders, The Geometry of Jet Bundles, Cambridge UniversityPress, 1989.[10℄ G. Terra and M. H. Kobayashi, On lassial mehanial systemswith non-linear onstraints, Journal of Geometry and Physis, 49 (2004),pp. 385�417.[11℄ , On the variational mehanis with non-linear onstraints, Journalde Mathématiques Pures et Appliquées, 83 (2004), pp. 629�671.[12℄ T. Tsujishita, On variation biomplexes assoiated to di�erentialequations, Osaka J. Math., 19 (1982), pp. 311�363.[13℄ W. M. Tulzyjew, The Euler-Lagrange resolution, vol. 836 of LetureNotes in Mathematis, Springer-Verlag, New York, 1980, pp. 22�48.[14℄ A. M. Vinogradov, On the algebra-geometri foundation of Lagrangian�eld theory, Sov. Math. Dokl., 18 (1977), pp. 1200�1204.
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SOME REMARKS ABOUT EXTINCTION INNONAUTONOMOUS KOLMOGOROV SYSTEMSJOANNA P�TELAInstitute of Mathematis and Computer SieneWroªaw University of Tehnologyjoanna.petela�pwr.wro.plAbstratThis paper gives a reent results on extintion in nonautonomousKolmogorov systems.Key words: Kolmogorov system, Lotka - Volterra system, upper average,lower average, logisti equation, permanene, global attrativity.AMS subjet lassi�ations: primary 34D05; seondary 34C12; 34C29;34D23; 92D40.1 IntrodutionIt is well known that the long-term oexistene problem of speies is a basi onein population dynamis. One of the famous models for dynamis of populationis the Lotka - Volterra ompetition system

u′i = ui



ai(t) −
N∑

j=1

bijuj(t)



 , (LV)where ai, bij > 0. Gopalsamy [2℄, [3℄ and Alvarez and Tineo [8℄ showed that iffor i = 1, . . . , N

aiL >

N∑

j=1
j 6=i

bijMajM

bjjL
for i = 1, . . . , Nwhere gL (resp. gM ) denotes the in�mum (resp. the supremum) of the funtion

g, then system (LV) is permanent and globally attrative. In [1℄ Ahmadand Lazer showed that permanene and global attrativity hold under weakeronditions, whih they alled average onditions or onditions A. The authorsapplied the notion of the upper and lower averages of a funtion; namely,
m[g] := lim inf

t−s→∞
1

t− s

∫ t

s

g(τ)dτ,149
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M [g] := lim sup

t−s→∞

1

t− s

∫ t

s

g(τ)dτ.With the help of the upper and lower average of a funtion they obtained aondition whih guarantees the permanene and global attrativity in a Lotka- Volterra system. The average onditions for system (LV) are
m[ai] >

N∑

j=1
j 6=i

bijMM [aj]

bjjL
for i = 1, . . . , NAt the same time Franiso Montes de Oa and Mary Lou Zeeman dealt withextintion (see for example [4℄). They onsidered ompeting system (LV), where

ai, bij : R → (0,∞) are ontinuous funtions bounded by positive reals. In [4℄they gave algebrai riteria on the parameters whih guarantee that all but oneof the speies are driven to extintion; namely, for eah k > 1 there exists ik < ksuh that for any j 6 k the inequality
akM bikjM < bikLakjL (E)holds. They proved that under onditions (E) the speies u2, . . . , uN are drivento extintion whilst the speies u1 stabilizes at the unique bounded solution u∗1of the logisti equation on the u1 axis. Moreover, they showed onvergene oftrajetories to u∗1.For eah r 6 N , let Hr denote the r - dimensional oordinate subspae onwhih xr+1, . . . , xN vanish. We use the variable v to denote the restrition ofsystem (LV) to Hr,

v′i(t) = vi(t)

(
ai(t) −

r∑

j=1

bij(t)vj(t)

)
, i = 1, . . . , r. (LV)rIn [4℄, Montes de Oa and Zeeman showed that given r 6 N , if for eah k > rthere exists ik < k suh that for any j 6 k the inequality

aiL >

N∑

j=1
j 6=i

bijM

(
ajM

bjjL

)holds, then the system (LV)r has a unique bounded stritly positivesolution v∗(t) = (v∗1(t), . . . , v∗r (t)) and every other positive solution u(t) =
(u1(t), . . . , uN (t)) of system (LV) has the property that

lim
t→∞

(uj(t) − v∗j (t)) = 0, j = 1, . . . , r,

lim
t→∞

uj(t) = 0, j = r + 1, . . . , N.In this paper we present results whih we proved in [5, 6, 7℄.



Some remarks about extintion in nonautonomous Kolmogorov systems 151We onsider an N - speies nonautonomous ompetitive Kolmogorov system
u′i = uifi(t, u) (K)on the nonnegative one

C = {u = (u1, . . . , uN) : ui > 0, 1 6 i, j 6 N},where(1) f = (f1, . . . , fN) : [0,∞)×C → R
N together with its �rst derivatives ∂fi

∂ujare ontinuous,(2) for eah ompat C̃ ⊂ C, ∂fi

∂uj
(t, u) are bounded and uniformly ontinuouson [0,∞) × C̃ with respet to u,(3) there exist a(1)

i , a
(2)
i > 0 suh that a(1)

i 6 fi(t, 0, . . . , 0) 6 a
(2)
i , t >

0, 1 6 i 6 N ,(4) ∂fi

∂uj
(t, u) 6 0, for all t > 0 u ∈ C, i, j = 1, . . . , N ,(5) there exist b(1)ii > 0 suh that ∂fi

∂ui
(t, u) 6 −b(1)ii for all t > 0, u ∈ C, i =

1, . . . , N .De�nition 1 A solution u(t) of system (K) is positive if ui(t) > 0 for all t > 0.2 PreliminariesWe begin with the following result.Lemma 1 If u : [t0, τmax) → C, t0 > 0, is a maximally de�ned positive solutionof (K) then(i) τmax = ∞,(ii) lim supt→∞ ui(t) 6
a
(2)
i

b
(1)
ii

for i = 1, . . . , N .Proof . See for example [5, 6, 7℄.
�De�ne

B :=

[
0,
a
(2)
1

b
(1)
11

]
× · · · ×

[
0,
a
(2)
N

b
(1)
NN

]
,

b
(2)
ij := − inf

{ ∂fi

∂uj
(t, x) : t > 0, x ∈ B

}
.Assumptions (2) and (4) guarantee that 0 6 b

(2)
ij <∞. Further, de�ne

a(1) := min{a(1)
i : i = 1, . . . , N},

b(2) := max{b(2)ij : i, j = 1, . . . , N}.



152 J. P�telaLemma 2 There is δ > 0 suh that if u(t) = (u1(t), . . . , uN(t)) is a positivesolution of (K) then
lim inf
t→∞

N∑

i=1

ui(t) > δ.Proof Proof. See for example [5, 6, 7℄.
�De�nition 2 System (K) is permanent if there exist positive onstants ν and

ν suh that for eah positive solution u(t) = (u1(t), . . . , uN (t))of (K) there is
T > 0 with the property ν 6 ui(t) 6 ν for eah t > T .De�ne the lower and upper averages of a funtion g whih is ontinuous andbounded above and below on [0,∞). If 0 < t < s we set

A[g, t, s] :=
1

t− s

∫ t

s

g(τ)dτ.The lower and upper averages of g denote by m[g] and M [g] respetively arede�ne by
m[g] := lim inf

t−s→∞
A[g, t, s],

M [g] := lim sup
t−s→∞

A[g, t, s].In [5℄ we proved that if
m[fi(·, 0, . . . , 0)] >

N∑

j=1
j 6=i

b
(2)
ij M [fj(·, 0, . . . , 0)]

b
(1)
jj

, for i = 1, . . . , N.then system (K) is permanent and globally attrative.3 Main ResultsIn [6℄ we introdued average onditions whih insure that all but one of thespeies are driven to extintion.Theorem 3 Assume that for all k > 1 there exists ik < k suh that for all
j 6 k

M [fk(·, 0, . . . , 0)]

m[fik
(·, 0, . . . , 0)]

<
b
(1)
kj

b
(2)
ikj

.If u = (u1(t), . . . , uN(t)) is a positive solution of (K) then for all i = 2, . . . , N
ui(t) → 0 as t→ ∞



Some remarks about extintion in nonautonomous Kolmogorov systems 153See Theorem 1 in [6℄.Denote by U1(t) a �xed positive solution of
U ′

1(t) = U1(t)f1(t, U1(t), 0, . . . , 0)It an be proved that U1(t) is de�ned on [0,∞), bounded above and below bypositive onstants, and globally attrative.Theorem 4 If u(t) = (u1(t), . . . , uN(t)) is a positive solution of (K) then
u1(t) → U1(t) as t→ ∞.For the proof see Theorem 2 in [6℄.In [7℄ we showed that for any r 6 N the average onditions guarantee that
r of the speies in system (K) are permanent while remaining N − r are drivento extintion.Theorem 5 Let r be a given integer with 1 6 r < N . Assume for any k > rthere is an ik < k suh that for any j 6 k

M [fk(·, 0, . . . , 0)]

m[fik
(·, 0, . . . , 0)]

<
b
(1)
kj

b
(2)
ikjholds. If u = (u1(t), . . . , uN (t)) is a positive solution of (K) then for all i > r

ui(t) → 0 exponentially as t→ ∞.For the proof see Theorem 1 in [7℄.Theorem 6 Suppose that all the onditions of Theorem 3 hold. Assume that
m


fi(t, 0, . . . , 0) −

N∑

j=1
j 6=i

b
(2)
ij Uj(t)


 > 0, for i = 1, . . . , r (M)where Uj is a positive solution of the equation

U ′
j(t) = Uj(t)

(
fj(t, 0, . . . , 0) − b

(1)
jj Uj(t)

)
.Then there exist ν > 0 and ν > 0 suh that for eah positive solution

u(t) = (u1(t), . . . , uN(t)) of system (K) there exists T > 0 suh that
ν 6 ui(t) 6 ν for t > T and i = 1, . . . , r.For a proof see Theorem 2 in [7℄.Denote I = {1, . . . , r}.



154 J. P�telaTheorem 7 Suppose that all the onditions of Theorem 3 hold. Assume thatthere exist positive onstants ρ1, . . . , ρr > 0 and ε > 0 suh that for j = 1, . . . , r

ρjb
(1)
jj −

r∑

i=1
i6=j

ρib
(2)
ij > ε.If u(t) = (u1(t), . . . , uN(t)) is any positive solution of (K) and ũ(t) = (ũ1(t), . . . ,

ũr(t)) is any positive solution of subsystem
u′i = uifi(t, u), i ∈ I,then

lim
t→∞

|uj(t) − ũj(t)| = 0 j = 1, . . . , r.For a proof see Theorem 3 in [7℄.Referenes[1℄ S. Ahmad, A.C. Lazer, Average onditions for global asymptoti stabilityin a nonautonomous Lotka - Volterra system. Nonlinear Anal, 40 (2000),p. 37�49.[2℄ K. Gopalsamy, Global asymptoti stability in a periodi Lotka - Volterrasystem. J. Aust. Math. So., Ser, B 27 (1986), p. 66�72.[3℄ K. Gopalsamy, Global asymptoti stability in a periodi Lotka - Volterrasystem. J. Aust. Math. So., Ser, B 27 (1986), p. 346�360.[4℄ F. Montes de Oa, M.L. Zeeman, Extintion in a nonautonomousompetitive Lotka - Volterra systems. Pro. Amer. Math. So., 124 (1996),p. 3677�3687.[5℄ J. Petela, Average onditions for Kolmogorov systems. Appl. Math.Comput., 215 (2009), p. 481�494.[6℄ J. Petela, Extintion in nonautonomous Kolmogorov systems. submitted topubliation.[7℄ J. Petela, Average onditions for extintion in nonautonomous Kolmogorovsystems. aepted to publiation in Nonlinear Analysis.[8℄ A. Tineo, C. Alvarez, A di�erent onsideration about the globally assymptotially stable solution of the periodi n-ompeting speies problem.J. Math. Anal. Appl., 159 (1991), p. 44�60.
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FORWARD AND PULLBACK ATTRACTION ON PULLBACKATTRACTORSFELIPE RIVERODpto. EDAN, Universidad de SevillaAptdo. 1160 41080 SEVILLAlfeliperiverog�us.esAbstratPullbak attrators are important elements to study the asymptotibehaviour for nonautonomous PDEs beause they opy the pullbakdynami of the system inside them. Although pullbak and forwarddynami may not be related, there exist some ases when the trajetoriesonverge forward in time to the pullbak attrator. In this work we provehow the pullbak attrator opy the forward dynami in these ases.Key words: pullbak attrator, forward attration, evolution proess.AMS subjet lassi�ations: 35B40, 35B41, 35L05, 35Q35.1 IntrodutionOne of the entral problems in dynamial systems is the study of theasymptoti behaviour of evolution proesses assoiated to the modeling ofreal world phenomena. When the model under study is an autonomousdi�erential equation, the asymptoti behaviour is rather well established andmany referenes on the subjet are available (f. Temam [16℄, Hale [10℄,Ladyzhenskaya [12℄, Babin-Vishik [1℄, Robinson [14℄ for example). However, ifthe evolution proess omes from a nonautonomous di�erential equation, eventhough some nie referenes are already available ((f. Cheban [7℄, Chepyzhov-Vishik [8℄, Kloeden [11℄, Sell-You[15℄, Caraballo et. al. [2℄), muh is yet to bedone.In general, a nonautonomous system shows two di�erent dynamis withoutrelation between them: forward dynami (the behaviour when �nal time goesto in�nity) and pullbak dynami (the behaviour when the initial time goes tominus in�nity). An interesting task onerns the analysis of the ase in whihboth kinds of attration take plae. Our aim is to show how the pullbakattrator opies the whole dynami in this ase. To do this, we will usethe framework of evolution proesses, beause we an identify the solution ofproblems with this kind of families. 155



156 Felipe RiveroDe�nition 1 An evolution proess in X is a family of maps {S(t, s) : t > s} ⊂
C(X) with the following properties1) S(t, t) = I for all t ∈ R,2) S(t, s) = S(t, τ)S(τ, s), for all t > τ > s,3) {(t, s) ∈ R

2 : t > s} ×X ∋ (t, s, x) 7→ S(t, s)x ∈ X is ontinuous.Sine a �xed set A in X will not, in general, remain �xed by anonautonomous proess, invariane for an evolution proess is de�ned as:De�nition 2 A family of nonempty sets {B(t) : t ∈ R} is invariant under
{S(t, s) : s 6 t} if S(t, s)B(s) = B(t) for all t > s. We say that {B(t) : t ∈ R}is positive invariant if we only have the inlusion S(t, s)B(s) ⊂ B(t).Now we an de�ne the pullbak attrator for an evolution proess.De�nition 3 A family of ompat sets {A(t) : t ∈ R} is the pullbak attratorfor {S(t, s) : s 6 t} if it is invariant, attrats all bounded subsets of X `in thepullbak sense', that is,

lim
s→−∞

dist(S(t, s)B,A(t)) = 0, ∀t ∈ R, ∀B ⊂ X bounded,and is minimal in the sense that if there exists a family of losed sets {C(t) :
t ∈ R} suh that attrats bounded sets of X, then A(t) ⊂ C(t), for all t ∈ R.We use the Hausdor� semi-distane. Let A,B be subsets of X and d : X −→
R the distane in X , then we de�ne the Hausdor� semi-distane as

dist sup
a∈A

inf
b∈B

d(a, b)In the nonautonomous ase we an also de�ne forward attration as follows:we say that {C(t) : t ∈ R} attrats the bounded set B ⊂ X if
lim

t→∞
dist(S(t+ s, s)B,C(t+ s)) = 0.The pullbak attrator does not neessarily have forward attration.Consider the following simple examples of nonautonomous equations givingdi�erent answers to the relation on pullbak and forward attration. Indeed,onsider
y′1(t) = −2ty1(t) + 2t2and
y′2(t) = 2ty2(t) + 2t2.Both an be solved expliitly with initial value y0 ∈ R at time s ∈ R by

y1(t, s) = (y0 − s)e−(t2−s2) + t− e−t2
∫ t

s

er2

dr,
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y2(t, s) = (y0 + s)et2−s2

+ t+ et2
∫ t

s

e−r2

dr.In the �rst ase we an observe how the trajetory is more and more loseto A1(t) = t − e−t2
∫ t

0
er2

dr when t goes to in�nity. In the same way, thetrajetories of the seond equation are attrated in a pullbak sense by the family
A2(t) = −t + et2

∫ t

−∞ e−r2

dr, that is, when initial time s → −∞. However,
{A1(t) : t ∈ R} is forward but not pullbak attrating and {A2(t) : t ∈ R} ispullbak but not forward.2 Pullbak and forward attration in evolution proessesThe uniform forward attration gives us trivial examples of pullbak attratorsthat have forward attration, beause a pullbak uniform attrator is also aforward uniform attrator and vie versa. In this ase we need a uniform oneptof attration, that is, we say that B ⊂ X attrats uniformly under the proess
{S(t, s) : s 6 t} if for any C ⊂ X

lim
t→∞

sup
s∈R

dist(S(t+ s, s)C,B) = 0. (1)We do not distinguish between pullbak and forward beause if we perform asimple hange of variables we obtain
lim

s→∞
sup
t∈R

dist(S(t, t− s)C,B) = 0. (2)The �rst de�nition of uniform attrator is given in [8℄ and is based on theautonomous de�nition of global attrator, so the authors de�ne it as a notneessarily invariant, in autonomous sense (S(t, s)A = T (t−s)A = A), ompatsubset that is uniformly attrating. However, afterwards in the same setion,we an �nd the onept of kernel setions of the uniform attrator, a partiularonept of pullbak attrator. In [6℄ we an �nd a de�nition of the uniformattrator where the invariant property holds. In both ases, all the resultsappear in the skew-produt framework. Below we write a general de�nition andan existene result within the framework of evolution proesses.De�nition 4 Let {S(t, s) : s 6 t} be an evolution proess. A family of boundedlosed sets {Au(t) : t ∈ R} is alled the uniform attrator if the followingproperties hold:1. There exists a ompat set Â ⊂ X suh that ⋃t∈R
Au(t) ⊂ Â.2. It is uniformly attrating under {S(t, s) : s 6 t}.3. It is minimal in the sense of De�nition 3.Theorem 1 If there exists a ompat uniformly attrating set, then thereexists the uniform attrator.



158 Felipe RiveroAlthough we need a pullbak attrating family, the forward attration omesfrom the ompat set Â. Atually, in this ase we have a global attrator thatis attrating in the pullbak sense too.In [9℄, the existene of a uniform exponential attrator for thenonautonomous equation
{
ut = a∆u− f(u) + g(t) in Ω

u(x, t) = 0 in ∂Ω,
(3)is proved under some restritions for funtions f and g.Other examples are nonautonomous perturbations of gradient-likesemigroups, where the forward attration omes from the autonomous natureof the limit problem. This kind of proesses possesses a onrete struture asthe union of unstable manifolds of some spei� sets. Let {Sη(t, s) : t > s}be evolution proesses, with η ∈ [0, 1], suh that Sη

η→0−→ S0 in a ertain sense,and {S0(t, s) = T (t − s) : t > s} is a gradient-like semigroup, that is, thereexists a �nite number of equilibria and all the global trajetories onvergeforward and bakward to them. Let us suppose that there exits a pullbakattrator {Aη(t) : t ∈ R} and a �nite number of isolated invariant families
{Ξ1,η, ...,Ξn,η} with traes {Γ1,η, ...,Γn,η}, where Γi,η =

⋃
t∈R

Ξi,η(t). In thisgeneral ase, and doing a omparison between autonomous and nonautonomousase, those isolated invariant families play the role of equilibrium points. Weneed to introdue the onept of trae beause the dynami of eah Ξi,η is notonstant in general (see [5℄ for more details and de�nitions). Let also supposethat for η = 0 we have a gradient-like global attrator. Under some onditionswe an write the pullbak attrator as Aη(t) =
⋃n

i=1W
u(Ξi,η)(t) for all η 6 η0for some η0 > 0. The following result is Theorem 1.12 of [5℄ and show how apullbak attrator possesses a forward attration too.Theorem 2 Suppose all the stationary points of {S0(t, s) = T (t− s) : t > s}are hyperboli. If we also assume that there is γ > 0 and, for eah 1 6 i 6 n,a neighborhood Vi,η of the trae Γi,η of Ξi,η suh that for any u0 ∈ Vi,η, s ∈ Rand as long as Sη(t+ s, s)u0 ∈ Vi,η

sup
s∈R

dist(Sη(t+ s, s)u0,W
u(Ξi,η)(t)) 6 Me−γt,then for any bounded set B ⊂ X, there is a onstant c(B) > 0 suh that

sup
s∈R

dist(Sη(t+ s, s)u0,Aη(t+ s)) 6 c(B)e−γt, for all u0 ∈ B. (4)The following nonautonomous damped wave equation gives us an exampleof pullbak attrator with exponential forward attration. In this ase we havea nonautonomous problem that does not ome from an autonomous one (see [3℄for more details). Let us onsider the following equation
{
utt + β(t)ut = ∆u+ f(u) in Ω

u(x, t) = 0 in ∂Ω,
(5)



Forward and pullbak attration on pullbak attrators 159where Ω ⊂ R
n is a bounded smooth domain, f ∈ C2(R) satis�es some growthonditions, and β : R → R is bounded and globally Lipshitz. The existene ofthe pullbak attrator in H1

0 (Ω) × L2(Ω) for this problem has been reentlyproved in [4℄, and if we assume that there only exists a �nite number ofequilibrium points, and all of them are hyperboli, then the pullbak attratorhas exponential forward attration as in (4).3 Trajetories inside the pullbak attratorOne of the most important result in the theory of pullbak attrators is relatedof its �nite fratal dimension. As in the autonomous ase (see [14℄), results in[13℄ prove that for eah trajetory of {S(t, s) : s 6 t} , another one an be foundinside the pullbak attrator that traks the original one. The following theoremgives an analogous result based on forward attrating families for evolutionproesses.Theorem 3 Suppose that the proess {S(t, s) : s 6 t} is Lipshitz in X,
sup
s∈R

‖S(t+ s, s)u− S(t+ s, s)v‖X 6 κ(t)‖u− v‖X , (6)with κ : R
+ ∪ {0} → R

+ ∪ {0} bounded in ompat subsets and u, v in anybounded subset B ∈ X. Suppose also that there exists a family of ompats sets
{A(t) : t ∈ R} that forward attrats bounded sets and is positive invariant under
{S(t, s) : s 6 t}. Then, for eah trajetory u(t, s) ∈ X of {S(t, s) : s 6 t} andpositive sequenes {εn}∞n=0 and {Tn}∞n=0 with εn

n→∞−→ 0, Tn < Tn+1 and
Tn

n→∞−→ ∞, there exists a sequene tn n→∞−→ ∞ and vn ∈ A(tn + s) suh that
sup

t∈[0,Tn]

‖u(t+ tn + s, s) − S(t+ tn + s, tn + s)vn‖X 6 εn. (7)Moreover, the `jumps' ‖vn+1 − S(Tn + tn + s, tn + s)vn‖X derease to zero.Proof . By the forward attration and the ompatness of eah set of thefamily {A(t) : t ∈ R}, there exists a time t0 = t0(ε0, T0) and a v0 ∈ A(t0 + s)suh that
‖S(t0 + s, s)u(s) − v0‖X 6

ε0
maxt∈[0,T0] κ(t)

.Hene, using (6) we have
‖S(t+ t0 + s, s)u(s) − S(t+ t0 + s, t0 + s)v0‖X

= ‖S(t+ t0 + s, t0 + s)S(t0 + s, s)u(s) − S(t+ t0 + s, t0 + s)v0‖X

6 max
t∈[0,T0]

κ(t)‖S(t0 + s, s)u(s) − v0‖X

6 ε0 for all t ∈ [0, T0].Now, for ε1 and T1 we an �nd a t1 and a v1 ∈ A(t1 + s) suh that t0 < t1and
‖S(t1 + s, s)u(s) − v1‖X 6

ε1
maxt∈[0,T1] κ(t)

,



160 Felipe Riverotherefore,
‖S(t+ t1 + s, s)u(s) − S(t+ t1 + s, t1 + s)v1‖X 6 ε1 for all t ∈ [0, T1].In the same manner, we an see that for any εn and Tn there exist a time

tn−1 < tn and a vn ∈ A(tn + s) suh that
‖S(t+ tn + s, s)u(s) − S(t+ tn + s, tn + s)v1‖X 6 εn for all t ∈ [0, Tn].Finally, we have
‖vn+1−S(Tn + tn + s, tn + s)vn‖X

6 ‖vn+1 − S(Tn + tn + s, tn + s)u(tn + s)‖X

+ ‖S(Tn + tn + s, tn + s)u(tn + s) − S(Tn + tn + s, tn + s)vn‖X

6 εn+1 + εn,whih ompletes the proof. �Remark 1 As tn does not depend on the initial time, we an trak u(t, s) bytrajetories in {A(t) : t ∈ R} of length Tn from tn + s to tn+1 + s within adistane εn.Due to Theorem 3, the uniform exponential attrator in example (3) traksthe forward trajetories of the system inH1
0 (Ω). If we have forward attration inthe pullbak attrator (as in example (5)), we an understand all the dynamisof the system only by the study of the dynami inside it, obtaining a ompleterepresentation of the dynami of the system in a �nite fratal dimensionalset. This shows the importane of studying pullbak attrator with forwardattration to understand the whole dynami of nonautonomous systems.Aknowledgement We would like to thank the anonymous referee forinteresting omments and suggestions.Referenes[1℄ A. B. Babin, M.B. Vishik, Attrators of evolution equations. NorthHolland, 1992.[2℄ T. Caraballo, G. Lukaszewiz, J. Real, Pullbak attrators forasymptotially ompat nonautonomous dynamial systems. NonlinearAnalysis, 64 (2006), p. 484�498[3℄ T. Caraballo, A.N. Carvalho, J. A. Langa, F. Rivero, A gradient-likenonautonomous evolution proess. Preprint[4℄ T. Caraballo, A.N. Carvalho, J. A. Langa, F. Rivero, Existene of pullbakattrator in pullbak asymptotially ompat proess. Preprint.
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